ﻻ يوجد ملخص باللغة العربية
Disconnectivity graphs are used to visualize the minima and the lowest energy barriers between the minima of complex systems. They give an easy and intuitive understanding of the underlying energy landscape and, as such, are excellent tools for understanding the complexity involved in finding low-lying or global minima of such systems. We have developed a classification scheme that categorizes highly-degenerate minima of spin glasses based on similarity and accessibility of the individual states. This classification allows us to condense the information pertained in different dales of the energy landscape to a single representation using color to distinguish its type and a bar chart to indicate the average size of the dales at their respective energy levels. We use this classification to visualize disconnectivity graphs of small representations of different tile-planted models of spin glasses. An analysis of the results shows that different models have distinctly different features in the total number of minima, the distribution of the minima with respect to the ground state, the barrier height and in the occurrence of the different types of minimum energy dales.
The strongest evidence for superiority of quantum annealing on spin glass problems has come from comparing simulated quantum annealing using quantum Monte Carlo (QMC) methods to simulated classical annealing [G. Santoro et al., Science 295, 2427(2002
We study the energy minima of the fully-connected $m$-components vector spin glass model at zero temperature in an external magnetic field for $mge 3$. The model has a zero temperature transition from a paramagnetic phase at high field to a spin glas
We investigate the properties of local minima of a recently introduced spin glass model of soft spins subjected to an anharmonic quartic local potential which serves as a model of low temperature molecular or soft glasses. We track the long time grad
We study the problem of glassy relaxations in the presence of an external field in the highly controlled context of a spin-glass simulation. We consider a small spin glass in three dimensions (specifically, a lattice of size L=8, small enough to be e
Using a non-thermal local search, called Extremal Optimization (EO), in conjunction with a recently developed scheme for classifying the valley structure of complex systems, we analyze a short-range spin glass. In comparison with earlier studies usin