ﻻ يوجد ملخص باللغة العربية
A conjugate heat transfer (CHT) immersed boundary (IB and CHTIB) method is developed for use with laminar and turbulent flows with low to moderate Reynolds numbers. The method is validated with the canonical flow of two co-annular rotating cylinders at $Re=50$ which shows second order accuracy of the $L_{2}$ and $L_{infty}$ error norms of the temperature field over a wide rage of solid to fluid thermal conductivities, $kappa_{s}/kappa_{f} = left(9-100right)$. To evaluate the CHTIBM with turbulent flow a fully developed, heated, turbulent channel $left(Re_{u_{tau}}=150text{ and } kappa_{s}/kappa_{f}=4 right)$ is used which shows near perfect correlation to previous direct numerical simulation (DNS) results. The CHTIB method is paired with a momentum IB method (IBM), both of which use a level set field to define the wetted boundaries of the fluid/solid interfaces and are applied to the flow solver implicitly with rescaling of the difference operators of the finite volume (FV) method (FVM).
We present an effective thermal open boundary condition for convective heat transfer problems on domains involving outflow/open boundaries. This boundary condition is energy-stable, and it ensures that the contribution of the open boundary will not c
The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this c
We extend the recently introduced divergence-conforming immersed boundary (DCIB) method [1] to fluid-structure interaction (FSI) problems involving closed co-dimension one solids. We focus on capsules and vesicles, whose discretization is particularl
The dissolution of solids has created spectacular geomorphologies ranging from centimeter-scale cave scallops to the kilometer-scale stone forests of China and Madagascar. Mathematically, dissolution processes are modeled by a Stefan problem, which d
We present a novel moving immersed boundary method (IBM) and employ it in direct numerical simulations (DNS) of the closed-vessel swirling von Karman flow in laminar and turbulent regimes. The IBM extends direct-forcing approaches by leveraging a tim