ﻻ يوجد ملخص باللغة العربية
We present an effective thermal open boundary condition for convective heat transfer problems on domains involving outflow/open boundaries. This boundary condition is energy-stable, and it ensures that the contribution of the open boundary will not cause an ``energy-like temperature functional to increase over time, irrespective of the state of flow on the open boundary. It is effective in coping with thermal open boundaries even in flow regimes where strong vortices or backflows are prevalent on such boundaries, and it is straightforward to implement. Extensive numerical simulations are presented to demonstrate the stability and effectiveness of our method for heat transfer problems with strong vortices and backflows occurring on the open boundaries. Simulation results are compared with previous works to demonstrate the accuracy of the presented method.
A conjugate heat transfer (CHT) immersed boundary (IB and CHTIB) method is developed for use with laminar and turbulent flows with low to moderate Reynolds numbers. The method is validated with the canonical flow of two co-annular rotating cylinders
We numerically study the Rayleigh-Benard (RB) convection in two-dimensional model emulsions confined between two parallel walls at fixed temperatures. The systems under study are heterogeneous, with finite-size droplets dispersed in a continuous phas
We present results of interface-resolved simulations of heat transfer in suspensions of finite-size neutrally-buoyant spherical particles for solid volume fractions up to 35% and bulk Reynolds numbers from 500 to 5600. An Immersed Boundary-Volume of
Lattice Boltzmann Method(LBM) has achieved considerable success on simulating complex flows. However, how to impose correct boundary conditions on the fluid-solid interface with complex geometries is still an open question. Here we proposed a velocit
We present numerical simulations of three-dimensional thermal convective flows in a cubic cell at high Rayleigh number using thermal lattice Boltzmann (LB) method. The thermal LB model is based on double distribution function approach, which consists