ﻻ يوجد ملخص باللغة العربية
The dissolution of solids has created spectacular geomorphologies ranging from centimeter-scale cave scallops to the kilometer-scale stone forests of China and Madagascar. Mathematically, dissolution processes are modeled by a Stefan problem, which describes how the motion of a phase-separating interface depends on local concentration gradients, coupled to a fluid flow. Simulating these problems is challenging, requiring the evolution of a free interface whose motion depends on the normal derivatives of an external field in an ever-changing domain. Moreover, density differences created in the fluid domain induce self-generated convecting flows that further complicate the numerical study of dissolution processes. In this contribution, we present a numerical method for the simulation of the Stefan problem coupled to a fluid flow. The scheme uses the Immersed Boundary Smooth Extension method to solve the bulk advection-diffusion and fluid equations in the complex, evolving geometry, coupled to a {theta}-L scheme that provides stable evolution of the boundary. We demonstrate third-order temporal and pointwise spatial convergence of the scheme for the classical Stefan problem, and second-order temporal and pointwise spatial convergence when coupled to flow. Examples of dissolution of solids that result in high-Rayleigh number convection are numerically studied, and qualitatively reproduce the complex morphologies observed in recent experiments.
The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet it only achieves first-order spatial accuracy near embedded boundaries. In this paper, we introduce a new high-order numerical me
The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet for fluid problems it only achieves first-order spatial accuracy near embedded boundaries for the velocity field and fails to con
The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this c
The supercooled Stefan problem and its variants describe the freezing of a supercooled liquid in physics, as well as the large system limits of systemic risk models in finance and of integrate-and-fire models in neuroscience. Adopting the physics ter
We perform a bifurcation analysis of the steady state solutions of Rayleigh--Benard convection with no-slip boundary conditions in two dimensions using a numerical method called deflated continuation. By combining this method with an initialisation s