ﻻ يوجد ملخص باللغة العربية
The parity-violating electron scattering community has made tremendous progress over the last twenty five years in their ability to measure tiny asymmetries of order 100 parts per billion (ppb) with beam-related corrections and systematic errors of a few ppb. Future experiments are planned for about an order of magnitude smaller asymmetries and with higher rates in the detectors. These new experiments pose new challenges for the beam instrumentation and for the strategy for setting up the beam. In this contribution to PAVI14 I discuss several of these challenges and demands, with a focus on developments at Jefferson Lab.
These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields (Snowmass 2013) on the future program of particle physics in the U.S. Chapter 8, on the Instrumentation Frontier, discusses the instrumen
A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been
A possible experimental setup for measuring the effect of parity violation in the interaction of the polarized proton or deuteron beams with an unpolarized target is discussed. One possibility is investigation of scattering of the proton or deuteron
Absolute neutrino cross section measurements at the GeV scale are ultimately limited by the knowledge of the initial $ u$ flux. In order to evade such limitation and reach the accuracy that is needed for precision oscillation physics ($sim 1$%), subs
The history and phenomenology of hadronic parity nonconservation (PNC) is reviewed. We discuss the current status of the experimental tests and theory. We describe a re-analysis of the asymmetry for polarized proton-proton scattering that, when combi