ﻻ يوجد ملخص باللغة العربية
A possible experimental setup for measuring the effect of parity violation in the interaction of the polarized proton or deuteron beams with an unpolarized target is discussed. One possibility is investigation of scattering of the proton or deuteron polarized beams on a thick internal target in one of the rings of the NICA collider. In this case, the spin of a circulating particles is transformed into a mode precessing in the horizontal plane using an RF flipper. The effect of parity violation will be studied by measuring the correlation of the interaction cross section of particles and the direction of their spins. In an alternative approach, the flipper transforms the spins of particles into a horizontal plane and the beam is extracted into the channel in a certain phase of the precession. In this more traditional experimental setup, the total cross section of the passage of particles through a dense target is measured, depending on the sign of the helicity of the polarization of the beam.
Dark matter is an important component of the Standard model of cosmology but its nature is still unknown. One of the most common explanations is that dark matter consists of Weakly Interacting Massive Particles (WIMPs), supposed to be cold thermal re
The parity-violating electron scattering community has made tremendous progress over the last twenty five years in their ability to measure tiny asymmetries of order 100 parts per billion (ppb) with beam-related corrections and systematic errors of a
We present measurements from the PHENIX experiment of large parity-violating single spin asymmetries of high transverse momentum electrons and positrons from $W^pm/Z$ decays, produced in longitudinally polarized $p$$+$$p$ collisions at center of mass
Laboratory experiments with high-energetic heavy-ion collisions offer the opportunity to explore fundamental properties of nuclear matter, such as the high-density equation-of-state, which governs the structure and dynamics of cosmic objects and phen
The study of antiproton yield in $p$-$p$ and $p$-$d$ collisions is important for the astrophysical search for dark matter consisting of Weakly Interacting Massive Particles. Refinement of the production cross section, angular and momentum spectra of