ﻻ يوجد ملخص باللغة العربية
The purpose of this paper is to establish some one-sided estimates for oscillatory singular integrals. The boundedness of certain oscillatory singular integral on weighted Hardy spaces $H^{1}_{+}(w)$ is proved. It is here also show that the $H^{1}_{+}(w)$ theory of oscillatory singular integrals above cannot be extended to the case of $H^{q}_{+}(w)$ when $0<q<1$ and $win A_{p}^{+}$, a wider weight class than the classical Muckenhoupt class. Furthermore, a criterion on the weighted $L^{p}$-boundednesss of the oscillatory singular integral is given.
We consider one-sided weight classes of Muckenhoupt type and study the weighted weak type (1,1) norm inequalities of a class of one-sided oscillatory singular integrals with smooth kernel.
We consider singular integral operators and maximal singular integral operators with rough kernels on homogeneous groups. We prove certain estimates for the operators that imply $L^p$ boundedness of them by an extrapolation argument under a sharp con
Let $ Tf =sum_{ I} varepsilon_I langle f,h_{I^+}rangle h_{I^-}$. Here, $ lvert varepsilon _Irvert=1 $, and $ h_J$ is the Haar function defined on dyadic interval $ J$. We show that, for instance, begin{equation*} lVert T rVert _{L ^{2} (w) to L ^{2}
We prove certain $L^p$ estimates ($1<p<infty$) for non-isotropic singular integrals along surfaces of revolution. As an application we obtain $L^p$ boundedness of the singular integrals under a sharp size condition on their kernels.
We study the commutators $[b,T]$ of pointwise multiplications and bi-parameter Calderon-Zygmund operators and characterize their off-diagonal $L^{p_1}L^{p_2} to L^{q_1}L^{q_2}$ boundedness in the range $(1,infty)$ for several of the mixed norm integrability exponents.