ﻻ يوجد ملخص باللغة العربية
We consider singular integral operators and maximal singular integral operators with rough kernels on homogeneous groups. We prove certain estimates for the operators that imply $L^p$ boundedness of them by an extrapolation argument under a sharp condition for the kernels. Also, we prove some weighted $L^p$ inequalities for the operators.
We prove certain $L^p$ estimates ($1<p<infty$) for non-isotropic singular integrals along surfaces of revolution. As an application we obtain $L^p$ boundedness of the singular integrals under a sharp size condition on their kernels.
The purpose of this paper is to establish some one-sided estimates for oscillatory singular integrals. The boundedness of certain oscillatory singular integral on weighted Hardy spaces $H^{1}_{+}(w)$ is proved. It is here also show that the $H^{1}_{+
We study the commutators $[b,T]$ of pointwise multiplications and bi-parameter Calderon-Zygmund operators and characterize their off-diagonal $L^{p_1}L^{p_2} to L^{q_1}L^{q_2}$ boundedness in the range $(1,infty)$ for several of the mixed norm integrability exponents.
In this paper, we are interested in the following bilinear fractional integral operator $Bmathcal{I}_alpha$ defined by [ Bmathcal{I}_{alpha}({f,g})(x)=int_{% %TCIMACRO{U{211d} }% %BeginExpansion mathbb{R} %EndExpansion ^{n}}frac{f(x-y)g(x+y)}{|y|^{
We establish $L^2$ boundedness of all nice parabolic singular integrals on Good Parabolic Graphs, aka {em regular} Lip(1,1/2) graphs. The novelty here is that we include non-homogeneous kernels, which are relevant to the theory of parabolic uniform r