ﻻ يوجد ملخص باللغة العربية
We study the quantum geometry of the fuzzy sphere defined as the angular momentum algebra $[x_i,x_j]=2imathlambda_p epsilon_{ijk}x_k$ modulo setting $sum_i x_i^2$ to a constant, using a recently introduced 3D rotationally invariant differential structure. Metrics are given by symmetric $3 times 3$ matrices $g$ and we show that for each metric there is a unique quantum Levi-Civita connection with constant coefficients, with scalar curvature $ frac{1}{2}({rm Tr}(g^2)-frac{1}{2}{rm Tr}(g)^2)/det(g)$. As an application, we construct Euclidean quantum gravity on the fuzzy unit sphere. We also calculate the charge 1 monopole for the 3D differential structure.
Non-commutative corrections to the classical expression for the fuzzy sphere area are found out through the asymptotic expansion for its heat kernel trace. As an important consequence, some quantum gravity deviations in the luminosity of black holes
We investigate quantum corrections in non-commutative gauge theory on fuzzy sphere. We study translation invariant models which classically favor a single fuzzy sphere with U(1) gauge group. We evaluate the effective actions up to the two loop level.
An algorithm to compute Connes spectral distance, adaptable to the Hilbert-Schmidt operatorial formulation of non-commutative quantum mechanics, was developed earlier by introducing the appropriate spectral triple and used to compute infinitesimal di
In this note we present preliminary study on the relation between the quantum entanglement of boundary states and the quantum geometry in the bulk in the framework of spin networks. We conjecture that the emergence of space with non-zero volume refle
We study scalar solitons on the fuzzy sphere at arbitrary radius and noncommutativity. We prove that no solitons exist if the radius is below a certain value. Solitons do exist for radii above a critical value which depends on the noncommutativity pa