ﻻ يوجد ملخص باللغة العربية
We investigate quantum corrections in non-commutative gauge theory on fuzzy sphere. We study translation invariant models which classically favor a single fuzzy sphere with U(1) gauge group. We evaluate the effective actions up to the two loop level. We find non-vanishing quantum corrections at each order even in supersymmetric models. In particular the two loop contribution favors U(n) gauge group over U(1) contrary to the tree action in a deformed IIB matrix model with a Myers term. We further observe close correspondences to 2 dimensional quantum gravity.
We study scalar solitons on the fuzzy sphere at arbitrary radius and noncommutativity. We prove that no solitons exist if the radius is below a certain value. Solitons do exist for radii above a critical value which depends on the noncommutativity pa
We present a numerical study of a two dimensional model of the Wess-Zumino type. We formulate this model on a sphere, where the fields are expanded in spherical harmonics. The sphere becomes fuzzy by a truncation in the angular momenta. This leads to
We study entanglement entropy on the fuzzy sphere. We calculate it in a scalar field theory on the fuzzy sphere, which is given by a matrix model. We use a method that is based on the replica method and applicable to interacting fields as well as fre
We investigate entanglement entropy in a scalar field theory on the fuzzy sphere. The theory is realized by a matrix model. In our previous study, we confirmed that entanglement entropy in the free case is proportional to the square of the boundary a
In the previous paper hep-th/0312199 we studied the t Hooft-Polyakov (TP) monopole configuration in the U(2) gauge theory on the fuzzy 2-sphere and showed that it has a nonzero topological charge in the formalism based on the Ginsparg-Wilson relation