ﻻ يوجد ملخص باللغة العربية
The shear viscosity in the dilute regime of a model for confined granular matter is studied by simulations and kinetic theory. The model consists on projecting into two dimensions the motion of vibrofluidized granular matter in shallow boxes by modifying the collision rule: besides the restitution coefficient that accounts for the energy dissipation, there is a separation velocity that is added in each collision in the normal direction. The two mechanisms balance on average, producing stationary homogeneous states. Molecular dynamics simulations show that in the steady state the distribution function departs from a Maxwellian, with cumulants that remain small in the whole range of inelasticities. The shear viscosity normalized with stationary temperature presents a clear dependence with the inelasticity, taking smaller values compared to the elastic case. A Boltzmann-like equation is built and analyzed using linear response theory. It is found that the predictions show an excellent agreement with the simulations when the correct stationary distribution is used but a Maxwellian approximation fails in predicting the inelasticity dependence of the viscosity. These results confirm that transport coefficients depend strongly on the mechanisms that drive them to stationary states.
A linear stability analysis of the hydrodynamic equations of a model for confined quasi-two-dimensional granular gases is carried out. The stability analysis is performed around the homogeneous steady state (HSS) reached eventually by the system afte
A collisional model of a confined quasi-two-dimensional granular mixture is considered to analyze homogeneous steady states. The model includes an effective mechanism to transfer the kinetic energy injected by vibration in the vertical direction to t
We study a simple model of periodic contraction and extension of large intruders in a granular bed to understand the mechanism for swimming in an otherwise solid media. Using an event-driven simulation, we find optimal conditions that idealized swimm
We study shear stress relaxation for a gelling melt of randomly crosslinked, interacting monomers. We derive a lower bound for the static shear viscosity $eta$, which implies that it diverges algebraically with a critical exponent $kge 2 u-beta$. Her
In this paper we present the molecular theory of viscosity of confined fluids in small or nano systems. This theory is also applicable to the interfacial viscosity. The basis of this research work is the Enskog kinetic theory and the Boussinesq const