ترغب بنشر مسار تعليمي؟ اضغط هنا

Swimming in Granular Media

147   0   0.0 ( 0 )
 نشر من قبل Takashi Shimada
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a simple model of periodic contraction and extension of large intruders in a granular bed to understand the mechanism for swimming in an otherwise solid media. Using an event-driven simulation, we find optimal conditions that idealized swimmers must use to critically fluidize a sand bed so that it is rigid enough to support a load when needed, but fluid enough to permit motion with minimal resistance. Swimmers - or other intruders - that agitate the bed too rapidly produce large voids that prevent traction from being achieved, while swimmers that move too slowly cannot travel before the bed re-solidifies around them i.e., the swimmers locally probe the fundamental time-scale in a granular packing.



قيم البحث

اقرأ أيضاً

The granular Leidenfrost effect (B. Meerson et al, Phys. Rev. Lett. {bf 91}, 024301 (2003), P. Eshuis et al, Phys. Rev. Lett. {bf 95}, 258001 (2005)) is the levitation of a mass of granular matter when a wall below the grains is vibrated giving rise to a hot granular gas below the cluster. We find by simulation that for a range of parameters the system is bistable: the levitated cluster can occasionally break and give rise to two clusters and a hot granular gas above and below. We use techniques from the theory of rare events to compute the mean transition time for breaking to occur. This requires the introduction of a two-component reaction coordinate.
We study experimentally the particle velocity fluctuations in an electrostatically driven dilute granular gas. The experimentally obtained velocity distribution functions have strong deviations from Maxwellian form in a wide range of parameters. We h ave found that the tails of the distribution functions are consistent with a stretched exponential law with typical exponents of the order 3/2. Molecular dynamic simulations shows qualitative agreement with experimental data. Our results suggest that this non-Gaussian behavior is typical for most inelastic gases with both short and long range interactions.
The simplest solvable problem of stress transmission through a static granular material is when the grains are perfectly rigid and have an average coordination number of $bar{z}=d+1$. Under these conditions there exists an analysis of stress which is independent of the analysis of strain and the $d$ equations of force balance $ abla_{j} sigma_{ij}({vec r}) = g_{i}({vec r})$ have to be supported by $frac{d(d-1)}{2}$ equations. These equations are of purely geometric origin. A method of deriving them has been proposed in an earlier paper. In this paper alternative derivations are discussed and the problem of the missing equations is posed as a geometrical puzzle which has yet to find a systematic solution as against sensible but fundamentally arbitrary approaches.
Some general dynamical properties of models for compaction of granular media based on master equations are analyzed. In particular, a one-dimensional lattice model with short-ranged dynamical constraints is considered. The stationary state is consist ent with Edwards theory of powders. The system is submitted to processes in which the tapping strength is monotonically increased and decreased. In such processes the behavior of the model resembles the reversible-irreversible branches which have been recently obaserved in experiments. This behavior is understood in terms of the general dynamical properties of the model, and related to the hysteresis cycles exhibited by structural glasses in thermal cycles. The existence of a normal solution, i.e., a solution of the master equation which is monotonically approached by all the other solutions, plays a fundamental role in the understanding of the hysteresis effects.
272 - A. Barrat , A. Puglisi , E. Trizac 2008
A driven granular material, e.g. a vibrated box full of sand, is a stationary system which may be very far from equilibrium. The standard equilibrium statistical mechanics is therefore inadequate to describe fluctuations in such a system. Here we pre sent numerical and analytical results concerning energy and injected power fluctuations. In the first part we explain how the study of the probability density function (pdf) of the fluctuations of total energy is related to the characterization of velocity correlations. Two different regimes are addressed: the gas driven at the boundaries and the homogeneously driven gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of homogeneity in hydrodynamics profiles, even in the absence of velocity correlations, the fluctuations of total energy are non-trivial and may lead to erroneous conclusions about the role of correlations. In the second part of the chapter we take into consideration the fluctuations of injected power in driven granular gas models. Recently, real and numerical experiments have been interpreted as evidence that the fluctuations of power injection seem to satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an alternative interpretation of such results which invalidates the Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and using techniques from large deviation theory, the general validity of a Fluctuation Relation for power injection in driven granular gases is questioned. Finally a functional is defined using the Lebowitz-Spohn approach for Markov processes applied to the linear inelastic Boltzmann equation relevant to describe the motion of a tracer particle. Such a functional results to be different from injected power and to satisfy a Fluctuation Relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا