ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetic normal modes and Casimir effects in layered structures

183   0   0.0 ( 0 )
 نشر من قبل Bo Sernelius
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bo E. Sernelius




اسأل ChatGPT حول البحث

We derive a general procedure for finding the electromagnetic normal modes in layered structures. We apply this procedure to planar, spherical and cylindrical structures. These normal modes are important in a variety of applications. They are the only input needed in calculations of Casimir interactions. We present explicit expression for the condition for modes and Casimir energy for a large number of specific geometries. The layers are allowed to be two-dimensional so graphene and graphene-like sheets as well as two-dimensional electron gases can be handled within the formalism. Also forces on atoms in layered structures are obtained. One side-result is the van der Waals and Casimir-Polder interaction between two atoms.



قيم البحث

اقرأ أيضاً

We show that an isotropic dipolar particle in the vicinity of a substrate made of nonreciprocal plasmonic materials can experience a lateral Casimir force and torque when the particles temperature differs from that of the slab and the environment. We connect the existence of the lateral force to the asymmetric dispersion of nonreciprocal surface polaritons and the existence of the lateral torque to the spin-momentum locking of such surface waves. Using the formalism of fluctuational electrodynamics, we show that the features of lateral force and torque should be experimentally observable using a substrate of doped Indium Antimonide (InSb) placed in an external magnetic field, and for a variety of dielectric particles. Interestingly, we also find that the directions of the lateral force and the torque depend on the constituent materials of the particles, which suggests a sorting mechanism based on lateral nonequilibrium Casimir physics.
A fundamental prediction of quantum mechanics is that there are random fluctuations everywhere in a vacuum because of the zero-point energy. Remarkably, quantum electromagnetic fluctuations can induce a measurable force between neutral objects, known as the Casimir effect, which has attracted broad interests. The Casimir effect can dominate the interaction between microstructures at small separations and has been utilized to realize nonlinear oscillation, quantum trapping, phonon transfer, and dissipation dilution. However, a non-reciprocal device based on quantum vacuum fluctuations remains an unexplored frontier. Here we report quantum vacuum mediated non-reciprocal energy transfer between two micromechanical oscillators. We modulate the Casimir interaction parametrically to realize strong coupling between two oscillators with different resonant frequencies. We engineer the systems spectrum to have an exceptional point in the parameter space and observe the asymmetric topological structure near it. By dynamically changing the parameters near the exceptional point and utilizing the non-adiabaticity of the process, we achieve non-reciprocal energy transfer with high contrast. Our work represents an important development in utilizing quantum vacuum fluctuations to regulate energy transfer at the nanoscale and build functional Casimir devices.
100 - Mingkang Wang , L. Tang , C. Y. Ng 2020
Quantum fluctuations give rise to Casimir forces between two parallel conducting plates, the magnitude of which increases monotonically as the separation decreases. By introducing nanoscale gratings to the surfaces, recent advances have opened opport unities for controlling the Casimir force in complex geometries. Here, we measure the Casimir force between two rectangular gratings in regimes not accessible before. Using an on-chip detection platform, we achieve accurate alignment between the two gratings so that they interpenetrate as the separation is reduced. Just before interpenetration occurs, the measured Casimir force is found to have a geometry dependence that is much stronger than previous experiments, with deviations from the proximity force approximation reaching a factor of ~500. After the gratings interpenetrate each other, the Casimir force becomes non-zero and independent of displacement. This work shows that the presence of gratings can strongly modify the Casimir force to control the interaction between nanomechanical components.
Here we present a fundamental study on how the ground-state chemical reactivity of a molecule can be modified in a QED scenario, i.e., when it is placed inside a cavity and there is strong coupling between the cavity field and vibrational modes withi n the molecule. We work with a model system for the molecule (Shin-Metiu model) in which nuclear, electronic and photonic degrees of freedom are treated on the same footing. This simplified model allows the comparison of exact quantum reaction rate calculations with predictions emerging from transition state theory based on the cavity Born-Oppenheimer approach. We demonstrate that QED effects are indeed able to significantly modify activation barriers in chemical reactions and, as a consequence, reaction rates. The critical physical parameter controlling this effect is the permanent dipole of the molecule and how this magnitude changes along the reaction coordinate. We show that the effective coupling can lead to significant single-molecule energy shifts in an experimentally available nanoparticle-on-mirror cavity. We then apply the validated theory to a realistic case (internal rotation in the 1,2-dichloroethane molecule), showing how reactions can be inhibited or catalyzed depending on the profile of the molecular dipole. Furthermore, we discuss the absence of resonance effects in this process, which can be understood through its connection to Casimir-Polder forces. Finally, we treat the case of many-molecule strong coupling, and find collective modifications of reaction rates if the molecular permanent dipole moments are oriented with respected to the cavity field. This demonstrates that collective coupling can also provide a mechanism for modifying ground-state chemical reactivity of an ensemble of molecules coupled to a cavity mode.
We introduce a modification of the standard entanglement swapping protocol where the generation of entanglement between two distant modes is realized and verified using only local optical measurements. We show, indeed, that a simple condition on the purity of the initial state involving also an ancillary mode is sufficient to guarantee the success of the protocol by local measurements {M. Abdi textit{et al.}, Phys. Rev. Lett. textbf{109}, 143601 (2012)}]. We apply the proposed protocol to a tripartite optomechanical system where the never interacting mechanical modes become entangled and certified using only local optical measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا