ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong geometry dependence of the Casimir force between interpenetrated rectangular gratings

101   0   0.0 ( 0 )
 نشر من قبل Mingkang Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum fluctuations give rise to Casimir forces between two parallel conducting plates, the magnitude of which increases monotonically as the separation decreases. By introducing nanoscale gratings to the surfaces, recent advances have opened opportunities for controlling the Casimir force in complex geometries. Here, we measure the Casimir force between two rectangular gratings in regimes not accessible before. Using an on-chip detection platform, we achieve accurate alignment between the two gratings so that they interpenetrate as the separation is reduced. Just before interpenetration occurs, the measured Casimir force is found to have a geometry dependence that is much stronger than previous experiments, with deviations from the proximity force approximation reaching a factor of ~500. After the gratings interpenetrate each other, the Casimir force becomes non-zero and independent of displacement. This work shows that the presence of gratings can strongly modify the Casimir force to control the interaction between nanomechanical components.

قيم البحث

اقرأ أيضاً

Several experimental demonstrations of the Casimir force between two closely spaced bodies have been realized over the past two decades. Extending the theory to incorporate the behavior of the force between two superconducting films close to their tr ansition temperature has resulted in competing predictions. To date, no experiment exists that can test these theories, partly due to the difficulty in aligning two superconductors in close proximity, while still allowing for a temperature-independent readout of the arising force between them. Here we present an on-chip platform based on an optomechanical cavity in combination with a grounded superconducting capacitor, which overcomes these challenges and opens up the possibility to probe modifications to the Casimir effect between two closely spaced, freestanding superconductors as they transition into a superconducting state. We also perform preliminary force measurements that demonstrate the capability of these devices to probe the interplay between two widely measured quantum effects: Casimir forces and superconductivity.
We derive an exact solution for the Casimir force between two arbitrary periodic dielectric gratings and illustrate our method by applying it to two nanostructured silicon gratings. We also reproduce the Casimir force gradient measured recently [1] b etween a silicon grating and a gold sphere taking into account the material dependence of the force. We find good agreement between our theoretical results and the measured values both in absolute force values and the ratios between the exact force and PFA predictions.
111 - John A. Sidles 1997
It is predicted that in force microscopy the quantum fluctuations responsible for the Casimir force can be directly observed as temperature-independent force fluctuations having spectral density $9pi/(40ln(4/e)) hbar delta k$, where $hbar$ is Plancks constant and $delta k$ is the observed change in spring constant as the microscope tip approaches a sample. For typical operating parameters the predicted force noise is of order $10^{-18}$ Newton in one Hertz of bandwidth. The Second Law is respected via the fluctuation-dissipation theorem. For small tip-sample separations the cantilever damping is predicted to increase as temperature is reduced, a behavior that is reminiscent of the Kondo effect.
We propose a superconducting circuit comprising a dc-SQUID with mechanically compliant arm embedded in a coplanar microwave cavity that realizes an optomechanical system with a degenerate or non-degenerate parametric interaction generated via the dyn amical Casimir effect. For experimentally feasible parameters, this setup is capable of reaching the single-photon, ultra-strong coupling regime, while simultaneously possessing a parametric coupling strength approaching the renormalized cavity frequency. This opens up the possibility of observing the interplay between these two fundamental nonlinearities at the single-photon level.
We report on the first measurement of a temperature dependence of the Casimir-Polder force. This measurement was obtained by positioning a nearly pure 87-Rb Bose-Einstein condensate a few microns from a dielectric substrate and exciting its dipole os cillation. Changes in the collective oscillation frequency of the magnetically trapped atoms result from spatial variations in the surface-atom force. In our experiment, the dielectric substrate is heated up to 605 K, while the surrounding environment is kept near room temperature (310 K). The effect of the Casimir-Polder force is measured to be nearly 3 times larger for a 605 K substrate than for a room-temperature substrate, showing a clear temperature dependence in agreement with theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا