ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonequilibrium Casimir effects of nonreciprocal surface waves

236   0   0.0 ( 0 )
 نشر من قبل Chinmay Khandekar Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that an isotropic dipolar particle in the vicinity of a substrate made of nonreciprocal plasmonic materials can experience a lateral Casimir force and torque when the particles temperature differs from that of the slab and the environment. We connect the existence of the lateral force to the asymmetric dispersion of nonreciprocal surface polaritons and the existence of the lateral torque to the spin-momentum locking of such surface waves. Using the formalism of fluctuational electrodynamics, we show that the features of lateral force and torque should be experimentally observable using a substrate of doped Indium Antimonide (InSb) placed in an external magnetic field, and for a variety of dielectric particles. Interestingly, we also find that the directions of the lateral force and the torque depend on the constituent materials of the particles, which suggests a sorting mechanism based on lateral nonequilibrium Casimir physics.

قيم البحث

اقرأ أيضاً

130 - Bo E. Sernelius 2014
We derive a general procedure for finding the electromagnetic normal modes in layered structures. We apply this procedure to planar, spherical and cylindrical structures. These normal modes are important in a variety of applications. They are the onl y input needed in calculations of Casimir interactions. We present explicit expression for the condition for modes and Casimir energy for a large number of specific geometries. The layers are allowed to be two-dimensional so graphene and graphene-like sheets as well as two-dimensional electron gases can be handled within the formalism. Also forces on atoms in layered structures are obtained. One side-result is the van der Waals and Casimir-Polder interaction between two atoms.
Stimulated emission and absorption are two fundamental processes of light-matter interaction, and the coefficients of the two processes should be equal in general. However, we will describe a generic method to realize significant difference between t he stimulated emission and absorption coefficients of two nondegenerate energy levels, which we refer to as nonreciprocal transition. As a simple implementation, a cyclic three-level atom system, comprising two nondegenerate energy levels and one auxiliary energy level, is employed to show nonreciprocal transition via a combination of synthetic magnetism and reservoir engineering. Moreover, a single-photon nonreciprocal transporter is proposed using two one dimensional semi-infinite coupled-resonator waveguides connected by an atom with nonreciprocal transition effect. Our work opens up a route to design atom-mediated nonreciprocal devices in a wide range of physical systems.
We propose to manipulate the statistic properties of the photons transport nonreciprocally via quadratic optomechanical coupling. We present a scheme to generate quadratic optomechanical interactions in the normal optical modes of a whispering-galler y-mode (WGM) optomechanical system by eliminating the linear optomechanical couplings via anticrossing of different modes. By optically pumping the WGM optomechanical system in one direction, the effective quadratic optomechanical coupling in that direction will be enhanced significantly, and nonreciprocal photon blockade will be observed consequently. Our proposal has potential applications for the on-chip nonreciprocal single-photon devices.
Metamaterials are fascinating tools that can structure not only surface plasmons and electromagnetic waves but also electromagnetic vacuum fluctuations. The possibility of shaping the quantum vacuum is a powerful concept that ultimately allows engine ering the interaction between macroscopic surfaces and quantum emitters such as atoms, molecules or quantum dots. The long-range atom-surface interaction, known as Casimir-Polder interaction, is of fundamental importance in quantum electrodynamics but also attracts a significant interest for platforms that interface atoms with nanophotonic devices. Here we perform a spectroscopic selective reflection measurement of the Casimir-Polder interaction between a Cs(6P_{3/2}) atom and a nanostructured metallic planar metamaterial. We show that by engineering the near-field plasmonic resonances of the metamaterial, we can successfully tune the Casimir-Polder interaction, demonstrating both a strong enhancement and reduction with respect to its non-resonant value. We also show an enhancement of the atomic spontaneous emission rate due to its coupling with the evanescent modes of the nanostructure. Probing excited state atoms next to nontrivial tailored surfaces is a rigorous test of quantum electrodynamics. Engineering Casimir-Polder interactions represents a significant step towards atom trapping in the extreme near field, possibly without the use of external fields.
In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Ca simir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا