ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-nanosecond signal propagation in anisotropy engineered nanomagnetic logic chains

279   0   0.0 ( 0 )
 نشر من قبل Mark Nowakowski
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Energy efficient nanomagnetic logic (NML) computing architectures propagate and process binary information by relying on dipolar field coupling to reorient closely-spaced nanoscale magnets. Signal propagation in nanomagnet chains of various sizes, shapes, and magnetic orientations has been previously characterized by static magnetic imaging experiments with low-speed adiabatic operation; however the mechanisms which determine the final state and their reproducibility over millions of cycles in high-speed operation (sub-ns time scale) have yet to be experimentally investigated. Monitoring NML operation at its ultimate intrinsic speed reveals features undetectable by conventional static imaging including individual nanomagnetic switching events and systematic error nucleation during signal propagation. Here, we present a new study of NML operation in a high speed regime at fast repetition rates. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic soft x-ray transmission microscopy after applying single nanosecond magnetic field pulses. Further, we use time-resolved magnetic photo-emission electron microscopy to evaluate the sub-nanosecond dipolar coupling signal propagation dynamics in optimized chains with 100 ps time resolution as they are cycled with nanosecond field pulses at a rate of 3 MHz. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macro-spin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.



قيم البحث

اقرأ أيضاً

Nanomagnetic logic is an energy efficient computing architecture that relies on the dipole field coupling of neighboring magnets to transmit and process binary information. In this architecture, nanomagnet chains act as local interconnects. To assess the merits of this technology, the speed and reliability of magnetic signal transmission along these chains must be experimentally determined. In this work, time-resolved pump-probe x-ray photo-emission electron microscopy is used to observe magnetic signal transmission along a chain of nanomagnets. We resolve successive error-free switching events in a single nanomagnet chain at speeds on the order of 100 ps per nanomagnet, consistent with predictions based on micromagnetic modeling. Errors which disrupt transmission are also observed. We discuss the nature of these errors, and approaches for achieving reliable operation.
The idea of nanomagnetic Boolean logic was advanced more than two decades ago. It envisaged the use of nanomagnets with two stable magnetization orientations as the primitive binary switch for implementing logic gates and ultimately combinational/seq uential circuits. Enthusiastic proclamations of how nanomagnetic logic will eclipse traditional (transistor-based) logic circuits proliferated the applied physics literature. Two decades later there is not a single viable nanomagnetic logic chip in sight, let alone one that is a commercial success. In this perspective article, I offer my reasons on why this has come to pass. I present a realistic and tempered vision of nanomagnetic logic, pointing out many misconceptions about this paradigm, flaws in some proposals that appeared in the literature, shortcomings, and likely pitfalls that might stymie progress in this field.
Topological modes in one- and two-dimensional systems have been proposed for numerous applications utilizing their exotic electronic responses. The zero-energy, topologically protected end modes can be realized in the Su-Schrieffer-Heeger (SSH) model , which has been experimentally implemented in atomic-scale solid-state structures and in ultra-cold atomic gases. While the edge modes in the SSH model are at exactly the mid-gap energy, other paradigmatic 1D models such as trimer and coupled dimer chains have non-zero energy boundary states. However, these chains have not been realized in an atomically tuneable system that would allow explicit control of the edge modes. Here, we demonstrate atomically controlled trimer and coupled dimer chains realized using chlorine vacancies in the c$(2times2)$ adsorption layer on Cu(100). This system allows wide tuneability of the domain wall modes that we experimentally demonstrate using low-temperature scanning tunneling microscopy (STM). In the future, these modes may be used to realize well-defined fractional charge states or find applications in exotic quantum devices with atomically well-defined geometries.
Expanding nanomagnetism and spintronics into three dimensions (3D) offers great opportunities for both fundamental and technological studies. However, probing the influence of complex 3D geometries on magnetoelectrical phenomena poses important exper imental and theoretical challenges. In this work, we investigate the magnetoelectrical signals of a ferromagnetic 3D nanodevice integrated into a microelectronic circuit using direct-write nanofabrication. Due to the 3D vectorial nature of both electrical current and magnetisation, a complex superposition of several magnetoelectrical effects takes place. By performing electrical measurements under the application of 3D magnetic fields, in combination with macrospin simulations and finite element modelling, we disentangle the superimposed effects, finding how a 3D geometry leads to unusual angular dependences of well-known magnetotransport effects such as the anomalous Hall effect. Crucially, our analysis also reveals a strong role of the noncollinear demagnetising fields intrinsic to 3D nanostructures, which results in an angular dependent magnon magnetoresistance contributing strongly to the total magnetoelectrical signal. These findings are key to the understanding of 3D spintronic systems and underpin further fundamental and device-based studies.
Spin currents can exert spin-transfer torques on magnetic systems even in the limit of vanishingly small net magnetization, as is the case for antiferromagnets. Here, we experimentally show that a spin-transfer torque is operative in a material with weak, short-range magnetic order -- namely, a macroscopic ensemble of superparamagnetic-like Co nanomagnets. We employ element- and time-resolved X-ray ferromagnetic resonance (XFMR) spectroscopy to directly detect sub-ns dynamics of the Co nanomagnets, excited into precession with cone angle $geq$0.003$^{circ}$ by an oscillating spin current. XFMR measurements reveal that as the net moment of the ensemble decreases, the strength of the spin-transfer torque increases relative to those of magnetic field torques. Our findings point to spin-transfer torque as an effective way to manipulate the state of nanomagnet ensembles at sub-ns timescales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا