ﻻ يوجد ملخص باللغة العربية
Spin currents can exert spin-transfer torques on magnetic systems even in the limit of vanishingly small net magnetization, as is the case for antiferromagnets. Here, we experimentally show that a spin-transfer torque is operative in a material with weak, short-range magnetic order -- namely, a macroscopic ensemble of superparamagnetic-like Co nanomagnets. We employ element- and time-resolved X-ray ferromagnetic resonance (XFMR) spectroscopy to directly detect sub-ns dynamics of the Co nanomagnets, excited into precession with cone angle $geq$0.003$^{circ}$ by an oscillating spin current. XFMR measurements reveal that as the net moment of the ensemble decreases, the strength of the spin-transfer torque increases relative to those of magnetic field torques. Our findings point to spin-transfer torque as an effective way to manipulate the state of nanomagnet ensembles at sub-ns timescales.
Magnetic insulators, such as yttrium iron garnet (Y$_3$Fe$_5$O$_{12}$), are ideal materials for ultra-low power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been
We theoretically study the influence of a predominant field-like spin-orbit torque on the magnetization switching of small devices with a uniform magnetization. We show that for a certain range of ratios (0.23-0.55) of the Slonczewski to the field-li
In large magnetoresistance devices spin torque-induced changes in resistance can produce GHz current and voltage oscillations which can affect magnetization reversal. In addition, capacitive shunting in large resistance devices can further reduce the
We show that the absence of pre-switching oscillations (incubation delay) in magnetic tunnel junctions can be explained within the macrospin model by a sizable field-like component of the spin-transfer torque. It is further suggested that measurement
We consider a quasi one-dimensional configuration consisting of two small pieces of ferromagnetic material separated by a metallic one and contacted by two metallic leads. A spin-polarized current is injected from one lead. Our goal is to investigate