ﻻ يوجد ملخص باللغة العربية
Topological modes in one- and two-dimensional systems have been proposed for numerous applications utilizing their exotic electronic responses. The zero-energy, topologically protected end modes can be realized in the Su-Schrieffer-Heeger (SSH) model, which has been experimentally implemented in atomic-scale solid-state structures and in ultra-cold atomic gases. While the edge modes in the SSH model are at exactly the mid-gap energy, other paradigmatic 1D models such as trimer and coupled dimer chains have non-zero energy boundary states. However, these chains have not been realized in an atomically tuneable system that would allow explicit control of the edge modes. Here, we demonstrate atomically controlled trimer and coupled dimer chains realized using chlorine vacancies in the c$(2times2)$ adsorption layer on Cu(100). This system allows wide tuneability of the domain wall modes that we experimentally demonstrate using low-temperature scanning tunneling microscopy (STM). In the future, these modes may be used to realize well-defined fractional charge states or find applications in exotic quantum devices with atomically well-defined geometries.
Recent magnetoconductance measurements performed on magnetic topological insulator candidates have revealed butterfly-shaped hysteresis. This hysteresis has been attributed to the formation of gapless chiral domain-wall bound states during a magnetic
Controllable artificial pinning is indispensable in numerous domain-wall (DW) devices, such as memory, sensor, logic gate, and neuromorphic computing hardware. The high-accuracy determination of the effective spring constant of the pinning potential,
Non-collinear spin states with unique rotational sense, such as chiral spin-spirals, are recently heavily investigated because of advantages for future applications in spintronics and information technology and as potential hosts for Majorana Fermion
We investigate the possible emergence of topological Hall effect (THE) in a driven magnetic DW. Numerical simulation based on the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation shows that the emergent magnetic flux appears when the DW is in a no
A flat band in fermionic system is a dispersionless single-particle state with a diverging effective mass and nearly zero group velocity. These flat bands are expected to support exotic properties in the ground state, which might be important for a w