ﻻ يوجد ملخص باللغة العربية
We utilize ultrafast optical measurement to study the quasiparticle relaxation in stoichiometric LiFeAs and nearly optimally doped (BaK)Fe2As2 crystals. According to our temperature-dependent studies of LiFeAs, we have observed pseudogap-like feature at onset temperature of ~ 55 K, which is above Tc = 15 K. In addition, the onset temperature of pseudogap ~90K was also observed in Ba0.6K0.4Fe2As2 (Tc = 36 K). Our findings seem implying that the pseudogap feature, which is due to antiferromagnetic fluctuations, is universal for the largely studied 11, 111, 122, and 1111 iron-based superconductors.
The K- and Co-doped BaFe2As2 (Ba-122) superconducting compounds are potentially useful for applications because they have upper critical fields (Hc2) of well over 50 T, Hc2 anisotropy Gamma < 2, and thin film critical current densities exceeding 1 MA
The discovery of the pseudogap in the cuprates created significant excitement amongst physicists as it was believed to be a signature of pairing, in some cases well above the room temperature. In this pre-formed pairs scenario, the formation of pairs
High resolution angle-resolved photoemission measurements have been carried out to study the superconducting gap in the (Ba0.6K0.4)Fe2As2 superconductor with Tc=35 K. Two hole-like Fermi surface sheets around the G(0,0) point exhibit different superc
The control of non-equilibrium phenomena in complex solids is an important research frontier, encompassing new effects like light induced superconductivity. Here, we show that coherent optical excitation of molecular vibrations in the organic conduct
The quasi-two-dimensional nickel chalcogenides $TlNi_2Se_2$ is a newly discovered superconductor. We have performed optical spectroscopy study on $TlNi_2Se_2$ single crystals over a broad frequency range at various temperatures. The overall optical r