ﻻ يوجد ملخص باللغة العربية
The quasi-two-dimensional nickel chalcogenides $TlNi_2Se_2$ is a newly discovered superconductor. We have performed optical spectroscopy study on $TlNi_2Se_2$ single crystals over a broad frequency range at various temperatures. The overall optical reflectance spectra are similar to those observed in its isostructure $BaNi_2As_2$. Both the suppression in $R(omega)$ and the peaklike feature in $sigma_1(omega)$ suggest the progressive formation of a pseudogap feature in the midinfrared range with decreasing temperatures, which might be originated from the dynamic local fluctuation of charge-density-wave (CDW) instability. We propose that the CDW instability in $TlNi_2Se_2$ is driven by the saddle points mechanism, due to the existence of van Hove singularity very close to the Fermi energy.
Pseudogap phase in superconductors continues to be an outstanding puzzle that differentiates unconventional superconductors from the conventional ones (BCS-superconductors). Employing high resolution photoemission spectroscopy on a highly dense conve
We utilize ultrafast optical measurement to study the quasiparticle relaxation in stoichiometric LiFeAs and nearly optimally doped (BaK)Fe2As2 crystals. According to our temperature-dependent studies of LiFeAs, we have observed pseudogap-like feature
We report the ultra-fast optical response of quasi-particles (QPs) in both the pseudogap (PG) and superconducting (SC) states of underdoped (UD) Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$ (Bi2212) single crystal measured with the time-resolved pump-prob
Superconductivity has been first observed in TlNi$_2$Se$_2$ at T$_C$=3.7 K and appears to involve heavy electrons with an effective mass $m^*$=14$sim$20 $m_b$, as inferred from the normal state electronic specific heat and the upper critical field, H
Superconducting metal dichalcogenides (MDCs) present several similarities to the other layered superconductors like cuprates. The superconductivity in atomically thin MDCs has been demonstrated by recent experiments, however, the investigation of the