ﻻ يوجد ملخص باللغة العربية
The discovery of the pseudogap in the cuprates created significant excitement amongst physicists as it was believed to be a signature of pairing, in some cases well above the room temperature. In this pre-formed pairs scenario, the formation of pairs without quantum phase rigidity occurs below T*. These pairs condense and develop phase coherence only below Tc. In contrast, several recent experiments reported that the pseudogap and superconducting states are characterized by two different energy scales, pointing to a scenario, where the two compete. However a number of transport, magnetic, thermodynamic and tunneling spectroscopy experiments consistently detect a signature of phase-fluctuating superconductivity above leaving open the question of whether the pseudogap is caused by pair formation or not. Here we report the discovery of a spectroscopic signature of pair formation and demonstrate that in a region of the phase diagram commonly referred to as the pseudogap, two distinct states coexist: one that persists to an intermediate temperature Tpair and a second that extends up to T*. The first state is characterized by a doping independent scaling behavior and is due to pairing above Tc, but significantly below T*. The second state is the proper pseudogap - characterized by a checker board pattern in STM images, the absence of pair formation, and is likely linked to Mott physics of pristine CuO2 planes. Tpair has a universal value around 130-150K even for materials with very different Tc, likely setting limit on highest, attainable Tc in cuprates. The observed universal scaling behavior with respect to Tpair indicates a breakdown of the classical picture of phase fluctuations in the cuprates.
In this brief report an attempt is made for a mise-a-point of the subject of the phase fluctuations of the superconducting order parameter above Tc in cuprates, particularly as they appear in underdoped compounds. Measurements of torque magnetometry,
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O(6+x). These experiments allow us to determine the field Hc(T) and th
We have studied the momentum dependence of the energy gap of Bi2(Sr,R)2CuOy by angleresolved photoemission spectroscopy (ARPES), particularly focusing on the difference between R=La and Eu. By comparing the gap function and characteristic temperature
Angle-resolved photoemission on underdoped La$_{1.895}$Sr$_{0.105}$CuO$_4$ reveals that in the pseudogap phase, the dispersion has two branches located above and below the Fermi level with a minimum at the Fermi momentum. This is characteristic of th
The nature of the pseudogap in high transition temperature (high-Tc) superconducting cuprates has been a major issue in condensed matter physics. It is still unclear whether the high-Tc superconductivity can be universally associated with the pseudog