ﻻ يوجد ملخص باللغة العربية
Ion Coulomb crystals are currently establishing themselves as a highly controllable test-bed for mesoscopic systems of statistical mechanics. The detailed experimental interrogation of the dynamics of these crystals however remains an experimental challenge. In this work, we show how to extend the concepts of multi-dimensional nonlinear spectroscopy to the study of the dynamics of ion Coulomb crystals. The scheme we present can be realized with state-of-the-art technology and gives direct access to the dynamics, revealing nonlinear couplings even in the presence of thermal excitations. We illustrate the advantages of our proposal showing how two-dimensional spectroscopy can be used to detect signatures of a structural phase transition of the ion crystal, as well as resonant energy exchange between modes. Furthermore, we demonstrate in these examples how different decoherence mechanisms can be identified.
The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging
We present experiments on polarization gradient cooling of Ca$^+$ multi-ion Coulomb crystals in a linear Paul trap. Polarization gradient cooling of the collective modes of motion whose eigenvectors have overlap with the symmetry axis of the trap is
We have developed an trapped ion system for producing two-dimensional (2D) ion crystals for applications in scalable quantum computing, quantum simulations, and 2D crystal phase transition and defect studies. The trap is a modification of a Paul trap
Crystals of repulsively interacting ions in planar traps form hexagonal lattices, which undergo a buckling instability towards a multi-layer structure as the transverse trap frequency is reduced. Numerical and experimental results indicate that the n
Defect-free monolayers of graphene and hexagonal boron nitride were previously shown to be surprisingly permeable to thermal protons, despite being completely impenetrable to all gases. It remains untested whether small ions can permeate through the