ترغب بنشر مسار تعليمي؟ اضغط هنا

Buckling transitions and clock order of two-dimensional Coulomb crystals

86   0   0.0 ( 0 )
 نشر من قبل Daniel Podolsky
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Crystals of repulsively interacting ions in planar traps form hexagonal lattices, which undergo a buckling instability towards a multi-layer structure as the transverse trap frequency is reduced. Numerical and experimental results indicate that the new structure is composed of three planes, whose separation increases continuously from zero. We study the effects of thermal and quantum fluctuations by mapping this structural instability to the six-state clock model. A prominent implication of this mapping is that at finite temperature, fluctuations split the buckling instability into two thermal transitions, accompanied by the appearance of an intermediate critical phase. This phase is characterized by quasi-long-range order in the spatial tripartite pattern. It is manifested by broadened Bragg peaks at new wave vectors, whose line-shape provides a direct measurement of the temperature dependent exponent $eta(T)$ characteristic of the power-law correlations in the critical phase. A quantum phase transition is found at the largest value of the critical transverse frequency: here the critical intermediate phase shrinks to zero. Moreover, within the ordered phase, we predict a crossover from classical to quantum behavior, signifying the emergence of an additional characteristic scale for clock order. We discuss experimental realizations with trapped ions and polarized dipolar gases, and propose that within accessible technology, such experiments can provide a direct probe of the rich phase diagram of the quantum clock model, not easily observable in condensed matter analogues. Therefore, this works highlights the potential for ionic and dipolar systems to serve as simulators for complex models in statistical mechanics and condensed matter physics.



قيم البحث

اقرأ أيضاً

We consider an off-lattice liquid crystal pair potential in strictly two dimensions. The potential is purely repulsive and short-ranged. Nevertheless, by means of a single parameter in the potential, the system is shown to undergo a first-order phase transition. The transition is studied using mean-field density functional theory, and shown to be of the isotropic-to-nematic kind. In addition, the theory predicts a large density gap between the two coexisting phases. The first-order nature of the transition is confirmed using computer simulation and finite-size scaling. Also presented is an analysis of the interface between the coexisting domains, including estimates of the line tension, as well as an investigation of anchoring effects.
A discrete time crystal is a remarkable non-equilibrium phase of matter characterized by persistent sub-harmonic response to a periodic drive. Motivated by the question of whether such time-crystalline order can persist when the drive becomes aperiod ic, we investigate the dynamics of a Lipkin-Meshkov-Glick model under quasiperiodic kicking. Intriguingly, this infinite-range-interacting spin chain can exhibit long-lived periodic oscillations when the kicking amplitudes are drawn from the Thue-Morse sequence (TMS). We dub this phase a ``self-ordered time crystal (SOTC), and demonstrate that our model hosts at least two qualitatively distinct prethermal SOTC phases. These SOTCs are robust to various perturbations, and they originate from the interplay of long-range interactions and the recursive structure of the TMS. Our results suggest that quasiperiodic driving protocols can provide a promising route for realizing novel non-equilibrium phases of matter in long-range interacting systems.
We construct a class of period-$n$-tupling discrete time crystals based on $mathbb{Z}_n$ clock variables, for all the integers $n$. We consider two classes of systems where this phenomenology occurs, disordered models with short-range interactions an d fully connected models. In the case of short-range models we provide a complete classification of time-crystal phases for generic $n$. For the specific cases of $n=3$ and $n=4$ we study in details the dynamics by means of exact diagonalisation. In both cases, through an extensive analysis of the Floquet spectrum, we are able to fully map the phase diagram. In the case of infinite-range models, the mapping onto an effective bosonic Hamiltonian allows us to investigate the scaling to the thermodynamic limit. After a general discussion of the problem, we focus on $n=3$ and $n=4$, representative examples of the generic behaviour. Remarkably, for $n=4$ we find clear evidence of a new crystal-to-crystal transition between period $n$-tupling and period $n/2$-tupling.
We study the thermodynamics of short-range interacting, two-dimensional bosons constrained to the lowest Landau level. When the temperature is higher than other energy scales of the problem, the partition function reduces to a multidimensional comple x integral that can be handled by classical Monte Carlo techniques. This approach takes the quantization of the lowest Landau level orbits fully into account. We observe that the partition function can be expressed in terms of a function of a single combination of thermodynamic variables, which allows us to derive exact thermodynamic relations. We determine the asymptotic behavior of this function and compute some thermodynamic observables numerically.
As the temperature of a many-body system approaches absolute zero, thermal fluctuations of observables cease and quantum fluctuations dominate. Competition between different energies, such as kinetic energy, interactions or thermodynamic potentials, can induce a quantum phase transition between distinct ground states. Near a continuous quantum phase transition, the many-body system is quantum critical, exhibiting scale invariant and universal collective behavior cite{Coleman05Nat, Sachdev99QPT}. Quantum criticality has been actively pursued in the study of a broad range of novel materials cite{vdMarel03Nat, Lohneysen07rmp, G08NatPhys, Sachdev08NatPhys}, and can invoke new insights beyond the Landau-Ginzburg-Wilson paradigm of critical phenomena cite{Senthil04prb}. It remains a challenging task, however, to directly and quantitatively verify predictions of quantum criticality in a clean and controlled system. Here we report the observation of quantum critical behavior in a two-dimensional Bose gas in optical lattices near the vacuum-to-superfluid quantum phase transition. Based on textit{in situ} density measurements, we observe universal scaling of the equation of state at sufficiently low temperatures, locate the quantum critical point, and determine the critical exponents. The universal scaling laws also allow determination of thermodynamic observables. In particular, we observe a finite entropy per particle in the critical regime, which only weakly depends on the atomic interaction. Our experiment provides a prototypical method to study quantum criticality with ultracold atoms, and prepares the essential tools for further study on quantum critical dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا