ﻻ يوجد ملخص باللغة العربية
We investigate the Rydberg states generation of Hydrogen atoms with intense laser pulses, by solving the time-dependent Schrodinger equation and by means of classical trajectory monte-carlo simulations. Both linearly polarized multi-cycle pulses and pairs of optical half cycle pulses are used. Comparisons between these methods show that both the Coulomb force and initial lateral momentum, which have effects on the $n$-distribution and $l$-distribution of the population of excited states, are important in the generation of Rydberg states.
We analyzed the two-dimensional (2D) electron momentum distributions of high-energy photoelectrons of atoms in an intense laser field using the second-order strong field approximation (SFA2). The SFA2 accounts for the rescattering of the returning el
We present a simple quantum mechanical model to describe Coulomb explosion of H$_2^+$ by short, intense, infrared laser pulses. The model is based on the length gauge version of the molecular strong-field approximation and is valid for pulses shorter
We show that high-order harmonics generated from molecules by intense laser pulses can be expressed as the product of a returning electron wave packet and the photo-recombination cross section (PRCS) where the electron wave packet can be obtained fro
A generalization of non-perturbative QED model for high harmonic generation is developed for the multi-mode optical field case. By introducing classical-field-dressed quantized Volkov states analytically, a formula to calculate HHG for hydrogen-like
This work describes the first observations of the ionisation of neon in a metastable atomic state utilising a strong-field, few-cycle light pulse. We compare the observations to theoretical predictions based on the Ammosov-Delone-Krainov (ADK) theory