ﻻ يوجد ملخص باللغة العربية
We present a simple quantum mechanical model to describe Coulomb explosion of H$_2^+$ by short, intense, infrared laser pulses. The model is based on the length gauge version of the molecular strong-field approximation and is valid for pulses shorter than 50 fs where the process of dissociation prior to ionization is negligible. The results are compared with recent experimental results for the proton energy spectrum [I. Ben-Itzhak et al., Phys. Rev. Lett. 95, 073002 (2005), B. D. Esry et al., Phys. Rev. Lett. 97, 013003 (2006)]. The predictions of the model reproduce the profile of the spectrum although the peak energy is slightly lower than the observations. For comparison, we also present results obtained by two different tunneling models for this process.
Carrier envelope phase (CEP) stabilized pulses of intense 800 nm light of 5 fs duration are used to probe the dissociation dynamics of dications of isotopically-substituted water, HOD. HOD$^{2+}$ dissociates into either H$^+$ + OD$^+$ or D$^+$ + OH$^
Aiming at the investigation of above-threshold ionization in super-strong laser fields with highly charged ions, we develop a Coulomb-corrected strong field approximation (SFA). The influence of the Coulomb potential of the atomic core on the ionized
The laser-induced fragmentation dynamics of this most fundamental polar molecule HeH$^+$ are measured using an ion beam of helium hydride and an isotopologue at various wavelengths and intensities. In contrast to the prevailing interpretation of stro
The quasistatic limit of the velocity-gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to linear polarized laser fields is derived. It is shown that in the low-frequency limit the ionization rate
We develop a relativistic Coulomb-corrected strong field approximation (SFA) for the investigation of spin effects at above-threshold ionization in relativistically strong laser fields with highly charged hydrogen-like ions. The Coulomb-corrected SFA