ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of high-order harmonic generation from molecules by intense laser pulses

219   0   0.0 ( 0 )
 نشر من قبل Anh-Thu Le
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that high-order harmonics generated from molecules by intense laser pulses can be expressed as the product of a returning electron wave packet and the photo-recombination cross section (PRCS) where the electron wave packet can be obtained from simple strong-field approximation (SFA) or from a companion atomic target. Using these wave packets but replacing the PRCS obtained from SFA or from the atomic target by the accurate PRCS from molecules, the resulting HHG spectra are shown to agree well with the benchmark results from direct numerical solution of the time-dependent Schrodinger equation, for the case of H$_2^+$ in laser fields. The result illustrates that these powerful theoretical tools can be used for obtaining high-order harmonic spectra from molecules. More importantly, the results imply that the PRCS extracted from laser-induced HHG spectra can be used for time-resolved dynamic chemical imaging of transient molecules with temporal resolutions down to a few femtoseconds.



قيم البحث

اقرأ أيضاً

We illustrate an iterative method for retrieving the internuclear separations of N$_2$, O$_2$ and CO$_2$ molecules using the high-order harmonics generated from these molecules by intense infrared laser pulses. We show that accurate results can be re trieved with a small set of harmonics and with one or few alignment angles of the molecules. For linear molecules the internuclear separations can also be retrieved from harmonics generated using isotropically distributed molecules. By extracting the transition dipole moment from the high-order harmonic spectra, we further demonstrated that it is preferable to retrieve the interatomic separation iteratively by fitting the extracted dipole moment. Our results show that time-resolved chemical imaging of molecules using infrared laser pulses with femtosecond temporal resolutions is possible.
Electron quantum path interferences in strongly laser-driven aligned molecules and their dependence on the molecular alignment is an essential open problem in strong-field molecular physics. Here, we demonstrate an approach which provides direct acce ss to the observation of these interference processes. The approach is based on the combination of the time-gated-ion-microscopy technique with a pump-probe arrangement used to align the molecules and generate high-order harmonics. By spatially resolving the interference pattern produced by the spatiotemporal overlap of the harmonics emitted by the short and long electron quantum paths, we have succeeded in measuring in situ their phase difference and disclose their dependence on molecular alignment. The findings constitute a vital step towards an understanding of strong-field molecular physics and the development of attosecond spectroscopy approaches without the use of auxiliary atomic references.
We investigate the electron quantum path interference effects during high harmonic generation in atomic gas medium driven by ultrashort chirped laser pulses. To achieve that, we identify and vary the different experimentally relevant control paramete rs of such a driving laser pulse influencing the high harmonic spectra. Specifically, the impact of the pulse duration, peak intensity and instantaneous frequency is studied in a self-consistent manner based on Lewenstein formalism. Simulations involving macroscopic propagation effects are also considered. The study aims to reveal the microscopic background behind a variety of interference patterns capturing important information both about the fundamental laser field and the generation process itself. The results provide guidance towards experiments with chirp control as a tool to unravel, explain and utilize the rich and complex interplay between quantum path interferences including the tuning of the periodicity of the intensity dependent oscillation of the harmonic signal, and the curvature of spectrally resolved Maker fringes.
We show that the dependence of high-order harmonic generation (HHG) on the molecular orientation can be understood within a theoretical treatment that does not involve the strong field of the laser. The results for H_2 show excellent agreement with t ime-dependent strong field calculations for model molecules, and this motivates a prediction for the orientation dependence of HHG from the N_2 3s_g valence orbital. For both molecules, we find that the polarization of recombination photons is influenced by the molecular orientation. The variations are particularly pronounced for the N_2 valence orbital, which can be explained by the presence of atomic p-orbitals.
High-order harmonic generation by a bicircular field, which consists of two coplanar counter-rotating circularly polarized fields of frequency $romega$ and $somega$ ($r$ and $s$ are integers), is investigated for a polyatomic molecule. This field pos sesses dynamical symmetry, which can be adjusted to the symmetry of the molecular Hamiltonian and used to investigate the molecular symmetry. For polyatomic molecules having the $C_{r+s}$ symmetry only the harmonics $n=q(r+s)pm r$, $q=1,2,ldots$, are emitted having the ellipticity $varepsilon_n=pm 1$. We illustrate this using the example of the planar molecules BH$_3$ and BF$_3$, which obey the $C_3$ symmetry. We show that for the BF$_3$ molecule, similarly to atoms with a $p$ ground state, there is a strong asymmetry in the emission of high harmonics with opposite helicities. This asymmetry depends on the molecular orientation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا