ترغب بنشر مسار تعليمي؟ اضغط هنا

Suzaku Studies of the Central Engine in the Typical Type I Seyfert NGC 3227: Detection of Multiple Primary X-ray Continua with Distinct Properties

127   0   0.0 ( 0 )
 نشر من قبل Hirofumi Noda
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The type I Seyfert galaxy NGC 3227 was observed by Suzaku six times in 2008, with intervals of $sim1$ week and net exposures of $sim50$ ksec each. Among the six observations, the source varied by nearly an order of magnitude, being brightest in the 1st observation with a 2-10 keV luminosity of $1.2times10^{42}$~erg~s$^{-1}$, while faintest in the 4th with $2.9times10^{41}$~erg~s$^{-1}$. As it became fainter, the continuum in a 2-45 keV band became harder, while a narrow Fe-K$alpha$ emission line, detected on all occasions at 6.4 keV of the source rest frame, remained approximately constant in the photon flux. Through a method of variability-assisted broad-band spectroscopy (e.g., Noda et al. 2013), the 2-45 keV spectrum of NGC 3227 was decomposed into three distinct components. One is a relatively soft power-law continuum with a photon index of $sim 2.3$, weakly absorbed and highly variable on time scales of $sim5$ ksec; it was observed only when the source was above a threshold luminosity of $sim6.6 times10^{41}$ erg s$^{-1}$ (in 2-10 keV), and was responsible for further source brightening beyond. Another is a harder and more absorbed continuum with a photon index of $sim 1.6$, which persisted through the six observations and varied slowly on time scales of a few weeks by a factor of $sim2$. This component, carrying a major fraction of the broad-band emission when the source is below the threshold luminosity, is considered as an additional primary emission. The last one is a reflection component with the narrow iron line, produced at large distances from the central black hole.



قيم البحث

اقرأ أيضاً

The bright type I Seyfert galaxy NGC 3516 was observed by {it Suzaku} twice, in 2005 October 12--15 and 2009 October 28--November 2, for a gross time coverage of 242 and 544 ksec and a net exposure of 134 and 255 ksec, respectively. The 2--10 keV lum inosity was $2.8 times 10^{41}$ erg s$^{-1}$ in 2005, and $1.6 times 10^{41}$ erg s$^{-1}$ in 2009. The 1.4--1.7 keV and 2--10 keV count rates both exhibited peak-to-peak variations by a factor of $sim2$ in 2005, while $sim 4$ in 2009. In either observation, the 15--45 keV count rate was less variable. The 2--10 keV spectrum in 2005 was significantly more convex than that in 2009. Through a count-count-plot technique, the 2--45 keV signals in both data were successfully decomposed in a model-independent way into two distinct broadband components. One is a variable emission with a featureless spectral shape, and the other is a non-varying hard component accompanied by a prominent Fe-K emission line at 6.33 keV (6.40 keV in the rest frame). The former was fitted successfully by an absorbed power-law model, while the latter requires a new hard continuum in addition to a reflection component from distant materials. The spectral and variability differences between the two observations are mainly attributed to long-term changes of this new hard continuum, which was stable on time scales of several hundreds ksec.
From 2013 April to 2014 April, we performed an X-ray and optical simultaneous monitoring of the type 1.5 Seyfert galaxy NGC 3516. It employed Suzaku, and 5 Japanese ground-based telescopes, the Pirka, Kiso Schmidt, Nayuta, MITSuME, and the Kanata tel escopes. The Suzaku observations were conducted seven times with various intervals ranging from days, weeks, to months, with an exposure of $sim50$ ksec each. The optical $B$-band observations not only covered those of Suzaku almost simultaneously, but also followed the source as frequently as possible. As a result, NGC 3516 was found in its faint phase with the 2-10 keV flux of $0.21-2.70 times 10^{-11}$ erg s$^{-1}$ cm$^{-2}$. The 2-45 keV X-ray spectra were composed of a dominant variable hard power-law continuum with a photon index of $sim1.7$, and a non-relativistic reflection component with a prominent Fe-K$alpha$ emission line. Producing the $B$-band light curve by differential image photometry, we found that the $B$-band flux changed by $sim2.7 times 10^{-11}$ erg s$^{-1}$ cm$^{-2}$, which is comparable to the X-ray variation, and detected a significant flux correlation between the hard power-law component in X-rays and the $B$-band radiation, for the first time in NGC 3516. By examining their correlation, we found that the X-ray flux preceded that of $B$ band by $2.0^{+0.7}_{-0.6}$ days ($1sigma$ error). Although this result supports the X-ray reprocessing model, the derived lag is too large to be explained by the standard view which assumes a lamppost-type X-ray illuminator located near a standard accretion disk. Our results are better explained by assuming a hot accretion flow and a truncated disk.
We present results of a 100 ks XMM observation of the Seyfert 1.5 NGC 3227. Our best-fit broadband model to the pn spectrum consists of a moderately flat (photon index 1.57) hard X-ray power-law absorbed by cold gas with N_H = 3 * 10^21 cm^-2, plus a strong soft excess, modeled as a steep power law with a photon index of 3.35, absorbed by cold gas with N_H = 9 * 10^20 cm^-2. The soft excess normalization increases by ~20% in ~20 ks, independently of the hard X-ray component, and the UV continuum, tracked via the OM, also shows a strong increasing trend over the observation, consistent with reprocessing of soft X-ray emission. Warm absorber signatures are evident in both the EPIC and RGS; we model two layers, with log(xi) = 1.2 and 2.9 erg cm s^-1, and with similar column densities (~1-2 * 10^21 cm^-2). The outflow velocities relative to systemic of the high- and low-ionization absorbers are estimated to be -(2060(+240,-170)) km/s and -(420(+430,-190)) km/s, respectively. The Fe K alpha line width FWHM is 7000 +/- 1500 km/s; its inferred radius is consistent with the BLR and with the inner radius of the dust reverberation-mapped by Suganuma et al. An emission feature near 6.0 keV is modeled equally well as a narrow redshifted Fe K line, possibly associated with a disk hot-spot, or as the red wing to a relativistically broadened Fe line profile. Swift-BAT and archival RXTE data suggest at most weak Compton reflection (R <~ 0.5), and a high-energy cutoff near 100 keV. From RXTE monitoring, we find tentative evidence for a significant fraction of the Fe line flux to track continuum variations on time scales < 700 days.
FR0s are compact radio sources that represent the bulk of the Radio-Loud (RL) AGN population, but they are still poorly understood. Pilot studies on these sources have been already performed at radio and optical wavelengths: here we present the first X-ray study of a sample of 19 FR0 radio galaxies selected from the SDSS/NVSS/FIRST sample of Best & Heckman (2012), with redshift $leq$ 0.15, radio size $leq$ 10 kpc and optically classified as low-excitation galaxies (LEG). The X-ray spectra are modeled with a power-law component absorbed by Galactic column density with, in some cases, a contribution from thermal extended gas. The X-ray photons are likely produced by the jet as attested by the observed correlation between X-ray (2-10 keV) and radio (5 GHz) luminosities, similar to FRIs. The estimated Eddington-scaled luminosities indicate a low accretion rate. Overall, we find that the X-ray properties of FR0s are indistinguishable from those of FRIs, thus adding another similarity between AGN associated with compact and extended radio sources. A comparison between FR0s and low luminosity BL Lacs, rules out important beaming effects in the X-ray emission of the compact radio galaxies. FR0s have different X-ray properties with respect to young radio sources (e.g. GPS/CSS sources), generally characterized by higher X-ray luminosities and more complex spectra. In conclusion, the paucity of extended radio emission in FR0s is probably related to the intrinsic properties of their jets that prevent the formation of extended structures, and/or to intermittent activity of their engines.
We present a flux-resolved X-ray analysis of the dwarf Seyfert 1.8 galaxy NGC 4395, based on three archival $XMM-Newton$ and one archival $NuSTAR$ observations. The source is known to harbor a low mass black hole ($sim 10^4- {rm a~ few~}times 10^{5}~ rm M_odot$) and shows strong variability in the full X-ray range during these observations. We model the flux-resolved spectra of the source assuming three absorbing layers: neutral, mildly ionized, and highly ionized ($N_{rm H} sim 1.6times 10^{22}-3.4 times 10^{23}~rm cm^{-2}$, $sim 0.8-7.8 times 10^{22}~rm cm^{-2}$, and $ 3.8 times 10^{22}~rm cm^{-2}$, respectively. The source also shows intrinsic variability by a factor of $sim 3$, on short timescales, due to changes in the nuclear flux, assumed to be a power law ($Gamma = 1.6-1.67$). Our results show a positive correlation between the intrinsic flux and the absorbers ionization parameter. The covering fraction of the neutral absorber varies during the first $XMM-Newton$ observation, which could explain the pronounced soft X-ray variability. However, the source remains fully covered by this layer during the other two observations, largely suppressing the soft X-ray variability. This suggests an inhomogeneous and layered structure in the broad line region. We also find a difference in the characteristic timescale of the power spectra between different energy ranges and observations. We finally show simulated spectra with $XRISM$, $Athena$, and $eXTP$, which will allow us to characterize the different absorbers, study their dynamics, and will help us identify their locations and sizes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا