ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of the broadband X-ray variability in the dwarf Seyfert galaxy NGC 4395

91   0   0.0 ( 0 )
 نشر من قبل Elias Kammoun
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a flux-resolved X-ray analysis of the dwarf Seyfert 1.8 galaxy NGC 4395, based on three archival $XMM-Newton$ and one archival $NuSTAR$ observations. The source is known to harbor a low mass black hole ($sim 10^4- {rm a~ few~}times 10^{5}~rm M_odot$) and shows strong variability in the full X-ray range during these observations. We model the flux-resolved spectra of the source assuming three absorbing layers: neutral, mildly ionized, and highly ionized ($N_{rm H} sim 1.6times 10^{22}-3.4 times 10^{23}~rm cm^{-2}$, $sim 0.8-7.8 times 10^{22}~rm cm^{-2}$, and $ 3.8 times 10^{22}~rm cm^{-2}$, respectively. The source also shows intrinsic variability by a factor of $sim 3$, on short timescales, due to changes in the nuclear flux, assumed to be a power law ($Gamma = 1.6-1.67$). Our results show a positive correlation between the intrinsic flux and the absorbers ionization parameter. The covering fraction of the neutral absorber varies during the first $XMM-Newton$ observation, which could explain the pronounced soft X-ray variability. However, the source remains fully covered by this layer during the other two observations, largely suppressing the soft X-ray variability. This suggests an inhomogeneous and layered structure in the broad line region. We also find a difference in the characteristic timescale of the power spectra between different energy ranges and observations. We finally show simulated spectra with $XRISM$, $Athena$, and $eXTP$, which will allow us to characterize the different absorbers, study their dynamics, and will help us identify their locations and sizes.



قيم البحث

اقرأ أيضاً

We present intensive quasi-simultaneous X-ray and radio monitoring of the narrow line Seyfert 1 galaxy NGC 4051, over a 16 month period in 2000-2001. Observations were made with the Rossi Timing X-ray Explorer (RXTE) and the Very Large Array (VLA) at 8.4 and 4.8 GHz. In the X-ray band NGC 4051 behaves much like a Galactic black hole binary (GBH) system in a `soft-state. In such systems, there has so far been no firm evidence for an active, radio-emitting jet like those found in `hard state GBHs. VLBI observations of NGC 4051 show three co-linear compact components. This structure resembles the core and outer hot spots seen in powerful, jet-dominated, extragalactic radio sources and suggests the existence of a weak jet. Radio monitoring of the core of NGC 4051 is complicated by the presence of surrounding extended emission and by the changing array configurations of the VLA. Only in the A configuration is the core reasonably resolved. We have carefully removed the contaminations of the core by extended emission in the various arrays. The resulting lightcurve shows no sign of large amplitude variability (i.e. factor 50 %) over the 16 month period. Within the most sensitive configuration (A array) we see marginal evidence for radio core variability of ~25% (~0.12 mJy at 8.4GHz) on a 2-week timescale, correlated with X-ray variations. Even if the radio variations in NGC 4051 are real, the percentage variability is much less than in the X-ray band. Within the B configuration observations, where sensitivity is reduced, there is no sign of correlated X-ray/radio variability. The lack of radio variability in NGC 4051, which we commonly see in `hard state GBHs, may be explained by orientation effects. Another possibility is that the radio emission arises from the X-ray corona, although the linear structure of the compact radio components here is hard to explain.
117 - Xinwen Shu 2012
We present the result of the Chandra high-resolution observation of the Seyfert~2 galaxy NGC 7590. This object was reported to show no X-ray absorption in the low-spatial resolution ASCA data. The XMM observations show that the X-ray emission of NGC 7590 is dominated by an off-nuclear ultra-luminous X-ray source (ULX) and an extended emission from the host galaxy, and the nucleus is rather weak, likely hosting a Compton-thick AGN. Our recent Chandra observation of NGC 7590 enables to remove the X-ray contamination from the ULX and the extended component effectively. The nuclear source remains undetected at ~4x10^{-15} erg/s/cm^-2 flux level. Although not detected, Chandra data gives a 2--10 keV flux upper limit of ~6.1x10^{-15} erg/s/cm^-2 (at 3 sigma level), a factor of 3 less than the XMM value, strongly supporting the Compton-thick nature of the nucleus. In addition, we detected five off-nuclear X-ray point sources within the galaxy D25 ellipse, all with 2 -- 10 keV luminosity above 2x10^{38} erg/s (assuming the distance of NGC 7590). Particularly, the ULX previously identified by ROSAT data was resolved by Chandra into two distinct X-ray sources. Our analysis highlights the importance of high spatial resolution images in discovering and studying ULXs.
74 - Paul M. ONeill 2006
We report on two Chandra observations, and a simultaneous Hubble Space Telescope ultraviolet observation, of the dwarf Seyfert 1 galaxy NGC 4395. Each Chandra observation had a duration of ~30 ks, with a separation of ~50 ks. The spectrum was observe d to harden between these observations via a scaling down of the soft-band flux. The inter-observation variability is in a different sense to the observed variability within each observation and is most likely the result of increased absorption. Spectral variations were seen during the first observation suggesting that the X-ray emission is produced in more than one disconnected region. We have also re-analyzed a ~17 ks Chandra observation conducted in 2000. During the three Chandra observations the 2-10 keV flux is about a factor of 2 lower than seen during an XMM-Newton observation conducted in 2003. Moreover, the fractional variability amplitude exhibited during the XMM-Newton observation is significantly softer than seen during the Chandra observations. A power-spectral analysis of the first of the two new Chandra observations revealed a peak at 341s with a formal detection significance of 99%. A similar peak was seen previously in the 2000 Chandra data. However, the detection of this feature is tentative given that it was found in neither the second of our two new Chandra observations nor the XMM-Newton data, and it is much narrower than expected. The Hubble Space Telescope observation was conducted during part of the second Chandra visit. A zero-lag correlation between the ultraviolet and X-ray fluxes was detected with a significance of about 99.5%, consistent with the predictions of the two-phase model for the X-ray emission from active galactic nuclei.
We present optical observations of the low-luminosity Seyfert 1 nucleus of NGC 4395, as part of a multiwavelength reverberation-mapping program. Observations were carried out over two nights in 2004 April at Lick, Wise, and Kitt Peak Observatories. W e obtained V-band and B-band photometry, and spectra over the range 3500-6800 Angstroms. Simultaneous Hubble Space Telescope UV and Chandra X-ray observations are presented in companion papers. Even though NGC 4395 was in an extremely low state of activity, we detect significant continuum variability of 2-10%, increasing toward shorter wavelengths. The continuum light curves, both spectroscopic and photometric, are qualitatively similar to the simultaneous UV and X-ray light curves. Inter-band cross-correlations suggest that the optical continuum emission lags behind the UV continuum emission by 24 +7/-9 min, and that the optical continuum emission lags behind the X-ray continuum emission by 44 +/- 13 min, consistent with a reprocessing model for active galactic nucleus emission. There are also hints of Balmer emission lines lagging behind the optical continuum by an amount slightly larger than the emission-line lag detected in the UV. These results are all similar to those of other Seyfert 1 nuclei. The emission-line lag yields a mass measurement of the central black hole, which although not very significant, is consistent with the value derived from the simultaneous UV data.
91 - J. E. Skelton 2004
We present optical spectroscopic observations of the least-luminous known Seyfert 1 galaxy, NGC 4395, which was monitored every half-hour over the course of 3 nights. The continuum emission varied by ~35 per cent over the course of 3 nights, and we f ind marginal evidence for greater variability in the blue continuum than the red. A number of diagnostic checks were performed on the data in order to constrain any systematic or aperture effects. No correlations were found that adequately explained the observed variability, hence we conclude that we have observed real intrinsic variability of the nuclear source. No simultaneous variability was measured in the broad H-beta line, although given the difficulty in deblending the broad and narrow components it is difficult to comment on the significance of this result. The observed short time-scale continuum variability is consistent with NGC 4395 having an intermediate-mass (~10^5 solar masses) central supermassive black hole, rather than a very low accretion rate. Comparison with the Seyfert 1 galaxy NGC 5548 shows that the observed variability seems to scale with black hole mass in roughly the manner expected in accretion models. However the absolute time-scale of variability differs by several orders of magnitude from that expected in simple accretion disc models in both cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا