ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray and Optical Correlation of Type I Seyfert NGC 3516 Studied with Suzaku and Japanese Ground-Based Telescopes

104   0   0.0 ( 0 )
 نشر من قبل Hirofumi Noda
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From 2013 April to 2014 April, we performed an X-ray and optical simultaneous monitoring of the type 1.5 Seyfert galaxy NGC 3516. It employed Suzaku, and 5 Japanese ground-based telescopes, the Pirka, Kiso Schmidt, Nayuta, MITSuME, and the Kanata telescopes. The Suzaku observations were conducted seven times with various intervals ranging from days, weeks, to months, with an exposure of $sim50$ ksec each. The optical $B$-band observations not only covered those of Suzaku almost simultaneously, but also followed the source as frequently as possible. As a result, NGC 3516 was found in its faint phase with the 2-10 keV flux of $0.21-2.70 times 10^{-11}$ erg s$^{-1}$ cm$^{-2}$. The 2-45 keV X-ray spectra were composed of a dominant variable hard power-law continuum with a photon index of $sim1.7$, and a non-relativistic reflection component with a prominent Fe-K$alpha$ emission line. Producing the $B$-band light curve by differential image photometry, we found that the $B$-band flux changed by $sim2.7 times 10^{-11}$ erg s$^{-1}$ cm$^{-2}$, which is comparable to the X-ray variation, and detected a significant flux correlation between the hard power-law component in X-rays and the $B$-band radiation, for the first time in NGC 3516. By examining their correlation, we found that the X-ray flux preceded that of $B$ band by $2.0^{+0.7}_{-0.6}$ days ($1sigma$ error). Although this result supports the X-ray reprocessing model, the derived lag is too large to be explained by the standard view which assumes a lamppost-type X-ray illuminator located near a standard accretion disk. Our results are better explained by assuming a hot accretion flow and a truncated disk.



قيم البحث

اقرأ أيضاً

The bright type I Seyfert galaxy NGC 3516 was observed by {it Suzaku} twice, in 2005 October 12--15 and 2009 October 28--November 2, for a gross time coverage of 242 and 544 ksec and a net exposure of 134 and 255 ksec, respectively. The 2--10 keV lum inosity was $2.8 times 10^{41}$ erg s$^{-1}$ in 2005, and $1.6 times 10^{41}$ erg s$^{-1}$ in 2009. The 1.4--1.7 keV and 2--10 keV count rates both exhibited peak-to-peak variations by a factor of $sim2$ in 2005, while $sim 4$ in 2009. In either observation, the 15--45 keV count rate was less variable. The 2--10 keV spectrum in 2005 was significantly more convex than that in 2009. Through a count-count-plot technique, the 2--45 keV signals in both data were successfully decomposed in a model-independent way into two distinct broadband components. One is a variable emission with a featureless spectral shape, and the other is a non-varying hard component accompanied by a prominent Fe-K emission line at 6.33 keV (6.40 keV in the rest frame). The former was fitted successfully by an absorbed power-law model, while the latter requires a new hard continuum in addition to a reflection component from distant materials. The spectral and variability differences between the two observations are mainly attributed to long-term changes of this new hard continuum, which was stable on time scales of several hundreds ksec.
We discuss the origin of the optical variations in the Narrow line Seyfert 1 galaxy NGC 4051 and present the results of a cross-correlation study using X-ray and optical light curves spanning more than 12 years. The emission is highly variable in all wavebands, and the amplitude of the optical variations is found to be smaller than that of the X-rays, even after correcting for the contaminating host galaxy flux falling inside the photometric aperture. The optical power spectrum is best described by an unbroken power law model with slope $alpha=1.4^{+0.6}_{-0.2}$ and displays lower variability power than the 2-10 keV X-rays on all time-scales probed. We find the light curves to be significantly correlated at an optical delay of $1.2^{+1.0}_{-0.3}$ days behind the X-rays. This time-scale is consistent with the light travel time to the optical emitting region of the accretion disc, suggesting that the optical variations are driven by X-ray reprocessing. We show, however, that a model whereby the optical variations arise from reprocessing by a flat accretion disc cannot account for all the optical variability. There is also a second significant peak in the cross-correlation function, at an optical delay of $39^{+2.7}_{-8.4}$ days. The lag is consistent with the dust sublimation radius in this source, suggesting that there is a measurable amount of optical flux coming from the dust torus. We discuss the origin of the additional optical flux in terms of reprocessing of X-rays and reflection of optical light by the dust.
After discovery of the Fermi bubbles, giant structures observed in radio to X-rays have been discussed as possi- ble evidence of past activities in the Galactic Center (GC). We report here on the analysis of Suzaku data pointing around the Loop I arc . The diffuse X-ray emission was well represented by the three-component model: (1) an unabsorbed thermal plasma with kT ~ 0.1 keV either from the Local Hot Bubble (LHB) and/or solar wind charge exchange (SWCX), (2) an absorbed thermal plasma regarded as a contribution from the Loop I and the Galactic halo (GH), and (3) an absorbed power-law component representing the cosmic X-ray background. The temper- ature of the absorbed thermal plasma was clustered in a range of 0.30 +- 0.02 keV along Loop I (ON regions), whereas the temperature was about 20 % lower in the cavity adjacent to the bubbles and Loop I (OFF regions) with 0.24 +- 0.03 keV. The emission measure (EM) varied along the Galactic latitude, and was well correlated with the count rate variation as measured with the ROSAT in 0.75 keV band. Although the amount of neutral gas was not conclusive to constrain on the distance to Loop I, the observed EM values rule out a hypothesis that the structure is close to the Sun; we argue that the Loop I is a distant, kpc structure of the shock-heated GH gas. We discuss the origin of apparent mismatch in the morphologies of the Fermi bubbles and the Loop I arc, suggesting a two-step explosion process in the GC.
We report the timing and spectral properties of Be/X-ray binary pulsar GX 304-1 by using two Suzaku observations during its 2010 August and 2012 January X-ray outbursts. Pulsations at ~275 s were clearly detected in the light curves from both the obs ervations. Pulse profiles were found to be strongly energy-dependent. During 2010 observation, prominent dips seen in soft X-ray ($leq$10 keV) pulse profiles were found to be absent at higher energies. However, during 2012 observation, the pulse profiles were complex due to the presence of several dips. Significant changes in the shape of the pulse profiles were detected at high energies ($>$35 keV). A phase shift of $sim$0.3 was detected while comparing the phase of main dip in pulse profiles below and above $sim$35 keV. Broad-band energy spectrum of pulsar was well described by a partially absorbed Negative and Positive power-law with Exponential cutoff (NPEX) model with 6.4 keV iron line and a cyclotron absorption feature. Energy of cyclotron absorption line was found to be $sim$53 and 50 keV for 2010 and 2012 observations, respectively, indicating a marginal positive dependence on source luminosity. Based on the results obtained from phase-resolved spectroscopy, the absorption dips in the pulse profiles can be interpreted as due to the presence of additional matter at same phases. Observed positive correlation between cyclotron line energy and luminosity, and significant pulse-phase variation of cyclotron parameters are discussed in the perspective of theoretical models on cyclotron absorption line in X-ray pulsars.
The type I Seyfert galaxy NGC 3227 was observed by Suzaku six times in 2008, with intervals of $sim1$ week and net exposures of $sim50$ ksec each. Among the six observations, the source varied by nearly an order of magnitude, being brightest in the 1 st observation with a 2-10 keV luminosity of $1.2times10^{42}$~erg~s$^{-1}$, while faintest in the 4th with $2.9times10^{41}$~erg~s$^{-1}$. As it became fainter, the continuum in a 2-45 keV band became harder, while a narrow Fe-K$alpha$ emission line, detected on all occasions at 6.4 keV of the source rest frame, remained approximately constant in the photon flux. Through a method of variability-assisted broad-band spectroscopy (e.g., Noda et al. 2013), the 2-45 keV spectrum of NGC 3227 was decomposed into three distinct components. One is a relatively soft power-law continuum with a photon index of $sim 2.3$, weakly absorbed and highly variable on time scales of $sim5$ ksec; it was observed only when the source was above a threshold luminosity of $sim6.6 times10^{41}$ erg s$^{-1}$ (in 2-10 keV), and was responsible for further source brightening beyond. Another is a harder and more absorbed continuum with a photon index of $sim 1.6$, which persisted through the six observations and varied slowly on time scales of a few weeks by a factor of $sim2$. This component, carrying a major fraction of the broad-band emission when the source is below the threshold luminosity, is considered as an additional primary emission. The last one is a reflection component with the narrow iron line, produced at large distances from the central black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا