ﻻ يوجد ملخص باللغة العربية
Resonant Raman spectra of single layer WS$_{2}$ flakes are presented. A second order Raman peak (2LA) appears under resonant excitation with a separation from the E$^{1}_{2g}$ mode of only $4$cm$^{-1}$. Depending on the intensity ratio and the respective line widths of these two peaks, any analysis which neglects the presence of the 2LA mode can lead to an inaccurate estimation of the position of the E$^{1}_{2g}$ mode, leading to a potentially incorrect assignment for the number of layers. Our results show that the intensity of the 2LA mode strongly depends on the angle between the linear polarization of the excitation and detection, a parameter which is neglected in many Raman studies.
Raman scattering and photoluminescence (PL) emission are used to investigate a single layer of tungsten disulfide (WS$_{2}$) obtained by exfoliating n-type bulk crystals. Direct gap emission with both neutral and charged exciton recombination is obse
We propose the use of nanostructured photonic nanocavities made of second-order nonlinear materials as prospective passive devices to generate strongly sub-Poissonian light via single-photon blockade of an input coherent field. The simplest scheme is
Valley-selective optical selection rules and a spin-valley locking in transition-metal dichalcogenide (TMDC) monolayers are at the heart of valleytronic physics, which exploits the valley degree of freedom and has been a major research topic in recen
We present a complete characterisation at the nanoscale of the growth and structure of single-layer tungsten disulfide (WS$_2$) epitaxially grown on Au(111). Following the growth process in real time with fast x-ray photoelectron spectroscopy, we obt
The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional (2D) semiconductors. They have attracted increasing attention due to their unique optical properties originate fr