ﻻ يوجد ملخص باللغة العربية
Millimeter sized single crystals of KCa_2Fe_4As_4F_2 were grown using a self-flux method. The chemical compositions and crystal structure were characterized carefully. Superconductivity with the critical transition T_c = 33.5 K was confirmed by both the resistivity and magnetic susceptibility measurements. Moreover, the upper critical field H_c2 was studied by the resistivity measurements under different magnetic fields. A rather steep increase for the in-plane H_c2^ab with cooling, dmu_0H_c2^a/dT|T_c = -50.9 T/K, was observed, indicating an extremely high upper critical field. Possible origins for this behavior were discussed. The findings in our work is a great promotion both for understanding the physical properties and applications of 12442-type Fe-based superconductors.
Low-temperature specific heat (SH) is measured for the 12442-type KCa$_2$Fe$_4$As$_4$F$_2$ single crystal under different magnetic fields. A clear SH jump with the height of $Delta C/T|_{T_c}$ = 130 mJ/mol K$^2$ is observed at the superconducting tra
This paper is published in Advanced Materials (available at http://www3.interscience.wiley.com/cgi-bin/abstract/113511105/ABSTRACT). It has been withdrawn from the cond-mat preprint archive in order to avoid a violation of the Journals policy.
The mechanism of high temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure, in particular the Fermi surface topology, is considered to play an essential rol
We use inelastic neutron scattering to study the low-energy spin excitations of 112-type iron pnictide Ca$_{0.82}$La$_{0.18}$Fe$_{0.96}$Ni$_{0.04}$As$_{2}$ with bulk superconductivity below $T_c=22$ K. A two-dimensional spin resonance mode is found a
Topological insulators/semimetals and unconventional iron-based superconductors have attracted major attentions in condensed matter physics in the past 10 years. However, there is little overlap between these two fields, although the combination of t