ﻻ يوجد ملخص باللغة العربية
Airglow emission lines, which dominate the optical-to-near-IR sky radiation, show strong, line-dependent variability on various time scales. Therefore, the subtraction of the sky background in the affected wavelength regime becomes a problem if plain sky spectra have to be taken at a different time as the astronomical data. A solution of this issue is the physically motivated scaling of the airglow lines in the plain sky data to fit the sky lines in the object spectrum. We have developed a corresponding instrument-independent approach based on one-dimensional spectra. Our code skycorr separates sky lines and sky/object continuum by an iterative approach involving a line finder and airglow line data. The sky lines are grouped according to their expected variability. The line groups in the sky data are then scaled to fit the sky in the science data. Required pixel-specific weights for overlapping groups are taken from a comprehensive airglow model. Deviations in the wavelength calibration are corrected by fitting Chebyshev polynomials and rebinning via asymmetric damped sinc kernels. The scaled sky lines and the sky continuum are subtracted separately. VLT X-Shooter data covering time intervals from two minutes to about one year were selected to illustrate the performance. Except for short time intervals of a few minutes, the sky line residuals were several times weaker than for sky subtraction without fitting. Further tests show that skycorr performs consistently better than the method of Davies (2007) developed for VLT SINFONI data.
We describe a procedure for background subtracting Sloan Digital Sky Survey (SDSS) imaging that improves the resulting detection and photometry of large galaxies on the sky. Within each SDSS drift scan run, we mask out detected sources and then fit a
Fibre-fed spectrographs now have throughputs equivalent to slit spectrographs. However, the sky subtraction accuracy that can be reached has often been pinpointed as one of the major issues associated with the use of fibres. Using technical time obse
We describe techniques concerning wavelength calibration and sky subtraction to maximise the scientific utility of data from tunable filter instruments. While we specifically address data from the Optical System for Imaging and low Resolution Integra
We report on the limitations of sky subtraction accuracy for long duration fibre-optic multi-object spectroscopy of faint astronomical sources during long duration exposures. We show that while standard sky subtraction techniques yield accuracies con
Context: The interaction of the light from astronomical objects with the constituents of the Earths atmosphere leads to the formation of telluric absorption lines in ground-based collected spectra. Correcting for these lines, mostly affecting the red