ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved background subtraction for the Sloan Digital Sky Survey images

515   0   0.0 ( 0 )
 نشر من قبل Michael Blanton
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a procedure for background subtracting Sloan Digital Sky Survey (SDSS) imaging that improves the resulting detection and photometry of large galaxies on the sky. Within each SDSS drift scan run, we mask out detected sources and then fit a smooth function to the variation of the sky background. This procedure has been applied to all SDSS-III Data Release 8 images, and the results are available as part of that data set. We have tested the effect of our background subtraction on the photometry of large galaxies by inserting fake galaxies into the raw pixels, reanalyzing the data, and measuring them after background subtraction. Our technique results in no size-dependent bias in galaxy fluxes up to half-light radii of 100 arcsec; in contrast, for galaxies of that size the standard SDSS photometric catalog underestimates fluxes by about 1.5 mag. Our results represent a substantial improvement over the standard SDSS catalog results and should form the basis of any analysis of nearby galaxies using the SDSS imaging data.



قيم البحث

اقرأ أيضاً

The Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM) is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg$^2$ field with the SDSS-III BOSS spectrograph. Th e RM quasar sample is flux-limited to i_psf=21.7 mag, and covers a redshift range of 0.1<z<4.5. Optical spectroscopy was performed during 2014 Jan-Jul dark/grey time, with an average cadence of ~4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bands was conducted at multiple facilities including the CFHT and the Steward Observatory Bok telescopes in 2014, with a cadence of ~2 days and covering all lunar phases. The RM field (RA, DEC=14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM 6-month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ~10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z>0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.
We investigate the Sloan Digital Sky Survey (SDSS) photometry from Data Release 8 (DR8) in the search for systematic trends that still exist after the calibration effort of Padmanabhan et al. We consider both the aperture and point-spread function (P SF) magnitudes in DR8. Using the objects with repeat observations, we find that a large proportion of the aperture magnitudes suffer a ~0.2-2% systematic trend as a function of PSF full-width half-maximum (FWHM), the amplitude of which increases for fainter objects. Analysis of the PSF magnitudes reveals more complicated systematic trends of similar amplitude as a function of PSF FWHM and object brightness. We suspect that sky over-subtraction is the cause of the largest amplitude trends as a function of PSF FWHM. We also detect systematic trends as a function of subpixel coordinates for the PSF magnitudes with peak-to-peak amplitudes of ~1.6 mmag and ~4-7 mmag for the over- and under-sampled images, respectively. We note that the systematic trends are similar in amplitude to the reported ~1% and ~2% precision of the SDSS photometry in the griz and u wavebands, respectively, and therefore their correction has the potential to substantially improve the SDSS photometric precision. We provide an {tt IDL} program specifically for this purpose. Finally, we note that the SDSS aperture and PSF magnitude scales are related by a non-linear transformation that departs from linearity by ~1-4%, which, without correction, invalidates the application of a photometric calibration model derived from the aperture magnitudes to the PSF magnitudes, as has been done for SDSS DR8.
We present an algorithm to photometrically calibrate wide field optical imaging surveys, that simultaneously solves for the calibration parameters and relative stellar fluxes using overlapping observations. The algorithm decouples the problem of rela tive calibrations, from that of absolute calibrations; the absolute calibration is reduced to determining a few numbers for the entire survey. We pay special attention to the spatial structure of the calibration errors, allowing one to isolate particular error modes in downstream analyses. Applying this to the Sloan Digital Sky Survey imaging data, we achieve ~1% relative calibration errors across 8500 sq.deg. in griz; the errors are ~2% for the u band. These errors are dominated by unmodelled atmospheric variations at Apache Point Observatory. These calibrations, dubbed ubercalibration, are now public with SDSS Data Release 6, and will be a part of subsequent SDSS data releases.
We present a recalibration of the Sloan Digital Sky Survey (SDSS) photometry with new flat fields and zero points derived from Pan-STARRS1 (PS1). Using PSF photometry of 60 million stars with $16 < r < 20$, we derive a model of amplifier gain and fla t-field corrections with per-run RMS residuals of 3 millimagnitudes (mmag) in $griz$ bands and 15 mmag in $u$ band. The new photometric zero points are adjusted to leave the median in the Galactic North unchanged for compatibility with previous SDSS work. We also identify transient non-photometric periods in SDSS (contrails) based on photometric deviations co-temporal in SDSS bands. The recalibrated stellar PSF photometry of SDSS and PS1 has an RMS difference of {9,7,7,8} mmag in $griz$, respectively, when averaged over $15$ regions.
We quantify the variability of faint unresolved optical sources using a catalog based on multiple SDSS imaging observations. The catalog covers SDSS Stripe 82, and contains 58 million photometric observations in the SDSS ugriz system for 1.4 million unresolved sources. In each photometric bandpass we compute various low-order lightcurve statistics and use them to select and study variable sources. We find that 2% of unresolved optical sources brighter than g=20.5 appear variable at the 0.05 mag level (rms) simultaneously in the g and r bands. The majority (2/3) of these variable sources are low-redshift (<2) quasars, although they represent only 2% of all sources in the adopted flux-limited sample. We find that at least 90% of quasars are variable at the 0.03 mag level (rms) and confirm that variability is as good a method for finding low-redshift quasars as is the UV excess color selection (at high Galactic latitudes). We analyze the distribution of lightcurve skewness for quasars and find that is centered on zero. We find that about 1/4 of the variable stars are RR Lyrae stars, and that only 0.5% of stars from the main stellar locus are variable at the 0.05 mag level. The distribution of lightcurve skewness in the g-r vs. u-g color-color diagram on the main stellar locus is found to be bimodal (with one mode consistent with Algol-like behavior). Using over six hundred RR Lyrae stars, we demonstrate rich halo substructure out to distances of 100 kpc. We extrapolate these results to expected performance by the Large Synoptic Survey Telescope and estimate that it will obtain well-sampled 2% accurate, multi-color lightcurves for ~2 million low-redshift quasars, and will discover at least 50 million variable stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا