ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular momentum transport within evolved low-mass stars

119   0   0.0 ( 0 )
 نشر من قبل Matteo Cantiello Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Asteroseismology of 1.0-2.0 Msun red giants by the Kepler satellite has enabled the first definitive measurements of interior rotation in both first ascent red giant branch (RGB) stars and those on the Helium burning clump. The inferred rotation rates are 10-30 days for the ~0.2Msun He degenerate cores on the RGB and 30-100 days for the He burning core in a clump star. Using the MESA code we calculate state-of-the-art stellar evolution models of low mass rotating stars from the zero-age main sequence to the cooling white dwarf (WD) stage. We include transport of angular momentum due to rotationally induced instabilities and circulations, as well as magnetic fields in radiative zones (generated by the Tayler-Spruit dynamo). We find that all models fail to predict core rotation as slow as observed on the RGB and during core He burning, implying that an unmodeled angular momentum transport process must be operating on the early RGB of low mass stars. Later evolution of the star from the He burning clump to the cooling WD phase appears to be at nearly constant core angular momentum. We also incorporate the adiabatic pulsation code, ADIPLS, to explicitly highlight this shortfall when applied to a specific Kepler asteroseismic target, KIC8366239. The MESA inlist adopted to calculate the models in this paper can be found at url{https://authorea.com/1608/} (bottom of the document).



قيم البحث

اقرأ أيضاً

Seismic observations by the space-borne mission emph{Kepler} have shown that the core of red giant stars slows down while evolving, requiring an efficient physical mechanism to extract angular momentum from the inner layers. Current stellar evolution codes fail to reproduce the observed rotation rates by several orders of magnitude, and predict a drastic spin-up of red giant cores instead. New efficient mechanisms of angular momentum transport are thus required. In this framework, our aim is to investigate the possibility that mixed modes extract angular momentum from the inner radiative regions of evolved low-mass stars. To this end, we consider the Transformed Eulerian Mean (TEM) formalism, introduced by Andrews & McIntyre (1978), that allows us to consider the combined effect of both the wave momentum flux in the mean angular momentum equation and the wave heat flux in the mean entropy equation as well as their interplay with the meridional circulation. In radiative layers of evolved low-mass stars, the quasi-adiabatic approximation, the limit of slow rotation, and the asymptotic regime can be applied for mixed modes and enable us to establish a prescription for the wave fluxes in the mean equations. The formalism is finally applied to a $1.3 M_odot$ benchmark model, representative of observed CoRoT and emph{Kepler} oscillating evolved stars. We show that the influence of the wave heat flux on the mean angular momentum is not negligible and that the overall effect of mixed modes is to extract angular momentum from the innermost region of the star. A quantitative and accurate estimate requires realistic values of mode amplitudes. This is provided in a companion paper.
84 - Kevin Belkacem 2019
Transport of angular momentum is a long-standing problem in stellar physics which recently became more acute thanks to the observations of the space-borne mission emph{Kepler}. Indeed, the need for an efficient mechanism able to explain the rotation profile of low-mass stars has been emphasized by asteroseimology and waves are among the potential candidates to do so. In this article, our objective is not to review all the literature related to the transport of angular momentum by waves but rather to emphasize the way it is to be computed in stellar models. We stress that to model wave transport of angular momentum is a non-trivial issue that requires to properly account for interactions between meridional circulation and waves. Also, while many authors only considered the effect of the wave momentum flux in the mean momentum equation, we show that this is an incomplete picture that prevents from grasping the main physics of the problem. We thus present the Transform Eulerian Formalism (TEM) which enable to properly address the problem.
We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation and consequent angular momentum transport by such waves. We find that the se waves are generated efficiently and transport angular momentum on short timescales over large distances. We show that, as in the Earths atmosphere, IGW drive equatorial flows which change magnitude and direction on short timescales. These results have profound consequences for the observational inferences of massive stars, as well as their long term angular momentum evolution. We suggest IGW angular momentum transport may explain many observational mysteries, such as: the misalignment of hot Jupiters around hot stars, the Be class of stars, Ni enrichment anomalies in massive stars and the non-synchronous orbits of interacting binaries.
Context: The internal characteristics of stars, such as their core rotation rates, are obtained via asteroseismic observations. A comparison of core rotation rates found in this way with core rotation rates as predicted by stellar evolution models de monstrate a large discrepancy. This means that there must be a process of angular momentum transport missing in the current theory of stellar evolution. A new formalism was recently proposed to fill in for this missing process, which has the Tayler instability as its starting point (hereafter referred to as `Fuller-formalism). Aims: We investigate the effect of the Fuller-formalism on the internal rotation of stellar models with an initial mass of 2.5 Mo. Methods: Stellar evolution models, including the Fuller-formalism, of intermediate-mass stars were calculated to make a comparison between asteroseismically obtained core rotation rates in the core He burning phase and in the white dwarf phase. Results: Our main results show that models including the Fuller-formalism can match the core rotation rates obtained for the core He burning phases. However, these models are unable to match the rotation rates obtained for white dwarfs. When we exclude the Fuller-formalism at the end of the core He burning phase, the white dwarf rotation rates of the models match the observed rates. Conclusions: We conclude that in the present form, the Fuller-formalism cannot be the sole solution for the missing process of angular momentum transport in intermediate-mass stars.
122 - A. A. Vidotto 2011
Recently, surface magnetic field maps had been acquired for a small sample of active M dwarfs, showing that fully convective stars (spectral types ~M4 and later) host intense (~kG), mainly axi-symmetrical poloidal fields. In particular, the rapidly r otating M dwarf V374Peg (M4), believed to lie near the theoretical full convection threshold, presents a stable magnetic topology on a time-scale of 1 yr. The rapid rotation of V374Peg (P=0.44 days) along with its intense magnetic field point toward a magneto-centrifugally acceleration of a coronal wind. In this work, we aim at investigating the structure of the coronal magnetic field in the M dwarf V374Peg by means of three-dimensional magnetohydrodynamical (MHD) numerical simulations of the coronal wind. For the first time, an observationally derived surface magnetic field map is implemented in MHD models of stellar winds for a low-mass star. We self-consistently take into consideration the interaction of the outflowing wind with the magnetic field and vice versa. Hence, from the interplay between magnetic forces and wind forces, we are able to determine the configuration of the magnetic field and the structure of the coronal winds. Our results enable us to evaluate the angular momentum loss of the rapidly rotating M dwarf V374Peg.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا