ترغب بنشر مسار تعليمي؟ اضغط هنا

Internal Gravity Waves in Massive Stars: Angular Momentum Transport

170   0   0.0 ( 0 )
 نشر من قبل Tamara Rogers
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation and consequent angular momentum transport by such waves. We find that these waves are generated efficiently and transport angular momentum on short timescales over large distances. We show that, as in the Earths atmosphere, IGW drive equatorial flows which change magnitude and direction on short timescales. These results have profound consequences for the observational inferences of massive stars, as well as their long term angular momentum evolution. We suggest IGW angular momentum transport may explain many observational mysteries, such as: the misalignment of hot Jupiters around hot stars, the Be class of stars, Ni enrichment anomalies in massive stars and the non-synchronous orbits of interacting binaries.



قيم البحث

اقرأ أيضاً

84 - Kevin Belkacem 2019
Transport of angular momentum is a long-standing problem in stellar physics which recently became more acute thanks to the observations of the space-borne mission emph{Kepler}. Indeed, the need for an efficient mechanism able to explain the rotation profile of low-mass stars has been emphasized by asteroseimology and waves are among the potential candidates to do so. In this article, our objective is not to review all the literature related to the transport of angular momentum by waves but rather to emphasize the way it is to be computed in stellar models. We stress that to model wave transport of angular momentum is a non-trivial issue that requires to properly account for interactions between meridional circulation and waves. Also, while many authors only considered the effect of the wave momentum flux in the mean momentum equation, we show that this is an incomplete picture that prevents from grasping the main physics of the problem. We thus present the Transform Eulerian Formalism (TEM) which enable to properly address the problem.
Asteroseismology of 1.0-2.0 Msun red giants by the Kepler satellite has enabled the first definitive measurements of interior rotation in both first ascent red giant branch (RGB) stars and those on the Helium burning clump. The inferred rotation rate s are 10-30 days for the ~0.2Msun He degenerate cores on the RGB and 30-100 days for the He burning core in a clump star. Using the MESA code we calculate state-of-the-art stellar evolution models of low mass rotating stars from the zero-age main sequence to the cooling white dwarf (WD) stage. We include transport of angular momentum due to rotationally induced instabilities and circulations, as well as magnetic fields in radiative zones (generated by the Tayler-Spruit dynamo). We find that all models fail to predict core rotation as slow as observed on the RGB and during core He burning, implying that an unmodeled angular momentum transport process must be operating on the early RGB of low mass stars. Later evolution of the star from the He burning clump to the cooling WD phase appears to be at nearly constant core angular momentum. We also incorporate the adiabatic pulsation code, ADIPLS, to explicitly highlight this shortfall when applied to a specific Kepler asteroseismic target, KIC8366239. The MESA inlist adopted to calculate the models in this paper can be found at url{https://authorea.com/1608/} (bottom of the document).
We find significant fluctuations of angular momentum within the convective helium shell of a pre-collapse massive star - a core-collapse supernova progenitor - which may facilitate the formation of accretion disks and jets that can explode the star. The convective flow in our model of an evolved M_ZAMS=15Msun star, computed with the sub-sonic hydrodynamic solver MAESTRO, contains entire shells with net angular momentum in different directions. This phenomenon may have important implications for the late evolutionary stages of massive stars, and for the dynamics of core-collapse.
Early-type stars are predicted to excite an entire spectrum of internal gravity waves (IGWs) at the interface of their convective cores and radiative envelopes. Numerical simulations of IGWs predict stochastic low-frequency variability in photometric observations, yet the detection of IGWs in early-type stars has been limited by a dearth of high-quality photometric time series. We present observational evidence of stochastic low-frequency variability in the CoRoT photometry of a sample of O, B, A and F stars. The presence of this stochastic low-frequency variability in stars across the upper main-sequence cannot be universally explained as granulation or stellar winds, but its morphology is found to be consistent with predictions from IGW simulations.
We propose that the observed misalignment between extra-solar planets and their hot host stars can be explained by angular momentum transport within the host star. Observations have shown that this misalignment is preferentially around hot stars, whi ch have convective cores and extended radiative envelopes. This situation is amenable to substantial angular momentum transport by internal gravity waves (IGW) generated at the convective-radiative interface. Here we present numerical simulations of this process and show that IGW can modulate the surface rotation of the star. With these two- dimensional simulations we show that IGW could explain the retrograde orbits observed in systems such as HAT-P-6 and HAT-P-7, however, extension to high obliquity objects will await future three- dimensional simulations. We note that these results also imply that individual massive stars should show temporal variations in their v sini measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا