ﻻ يوجد ملخص باللغة العربية
Seismic observations by the space-borne mission emph{Kepler} have shown that the core of red giant stars slows down while evolving, requiring an efficient physical mechanism to extract angular momentum from the inner layers. Current stellar evolution codes fail to reproduce the observed rotation rates by several orders of magnitude, and predict a drastic spin-up of red giant cores instead. New efficient mechanisms of angular momentum transport are thus required. In this framework, our aim is to investigate the possibility that mixed modes extract angular momentum from the inner radiative regions of evolved low-mass stars. To this end, we consider the Transformed Eulerian Mean (TEM) formalism, introduced by Andrews & McIntyre (1978), that allows us to consider the combined effect of both the wave momentum flux in the mean angular momentum equation and the wave heat flux in the mean entropy equation as well as their interplay with the meridional circulation. In radiative layers of evolved low-mass stars, the quasi-adiabatic approximation, the limit of slow rotation, and the asymptotic regime can be applied for mixed modes and enable us to establish a prescription for the wave fluxes in the mean equations. The formalism is finally applied to a $1.3 M_odot$ benchmark model, representative of observed CoRoT and emph{Kepler} oscillating evolved stars. We show that the influence of the wave heat flux on the mean angular momentum is not negligible and that the overall effect of mixed modes is to extract angular momentum from the innermost region of the star. A quantitative and accurate estimate requires realistic values of mode amplitudes. This is provided in a companion paper.
The detection of mixed modes in subgiants and red giants by the CoRoT and emph{Kepler} space-borne missions allows us to investigate the internal structure of evolved low-mass stars. In particular, the measurement of the mean core rotation rate as a
Asteroseismology of 1.0-2.0 Msun red giants by the Kepler satellite has enabled the first definitive measurements of interior rotation in both first ascent red giant branch (RGB) stars and those on the Helium burning clump. The inferred rotation rate
CoRoT and Kepler observations of red giant stars revealed very rich spectra of non-radial solar-like oscillations. Of particular interest was the detection of mixed modes that exhibit significant amplitude, both in the core and at the surface of the
We introduce a general mathematical framework to model the internal transport of angular momentum in a star hosting a close-in planetary/stellar companion. By assuming that the tidal and rotational distortions are small and that the deposit/extractio
Context: The internal characteristics of stars, such as their core rotation rates, are obtained via asteroseismic observations. A comparison of core rotation rates found in this way with core rotation rates as predicted by stellar evolution models de