ﻻ يوجد ملخص باللغة العربية
A symmetric and a nonsymmetric variant of the additive Schwarz preconditioner are proposed for the solution of a nonsymmetric system of algebraic equations arising from a general finite volume element discretization of symmetric elliptic problems with large jumps in the entries of the coefficient matrices across subdomains. It is shown in the analysis, that the convergence of the preconditioned GMRES iteration with the proposed preconditioners, depends polylogarithmically on the mesh parameters, in other words, the convergence is only weakly dependent on the mesh parameters, and it is robust with respect to the jumps in the coefficients.
In this paper, we present two variants of the Additive Schwarz Method for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second order elliptic problems with discontinuous coefficients where the discontinuities are only across subd
In this paper we design and analyze a uniform preconditioner for a class of high order Discontinuous Galerkin schemes. The preconditioner is based on a space splitting involving the high order conforming subspace and results from the interpretation o
In this paper we propose a finite element method for solving elliptic equations with the observational Dirichlet boundary data which may subject to random noises. The method is based on the weak formulation of Lagrangian multiplier. We show the conve
An $hp$ version of interface penalty finite element method ($hp$-IPFEM) is proposed for elliptic interface problems in two and three dimensions on unfitted meshes. Error estimates in broken $H^1$ norm, which are optimal with respect to $h$ and subopt
We present a weak finite element method for elliptic problems in one space dimension. Our analysis shows that this method has more advantages than the known weak Galerkin method proposed for multi-dimensional problems, for example, it has higher accu