ﻻ يوجد ملخص باللغة العربية
In this paper we propose a finite element method for solving elliptic equations with the observational Dirichlet boundary data which may subject to random noises. The method is based on the weak formulation of Lagrangian multiplier. We show the convergence of the random finite element error in expectation and, when the noise is sub-Gaussian, in the Orlicz 2- norm which implies the probability that the finite element error estimates are violated decays exponentially. Numerical examples are included.
We present a weak finite element method for elliptic problems in one space dimension. Our analysis shows that this method has more advantages than the known weak Galerkin method proposed for multi-dimensional problems, for example, it has higher accu
This paper presents a steady-state and transient heat conduction analysis framework using the polygonal scaled boundary finite element method (PSBFEM) with polygon/quadtree meshes. The PSBFEM is implemented with commercial finite element code Abaqus
In this paper, we examine the effectiveness of classic multiscale finite element method (MsFEM) (Hou and Wu, 1997; Hou et al., 1999) for mixed Dirichlet-Neumann, Robin and hemivariational inequality boundary problems. Constructing so-called boundary
An $hp$ version of interface penalty finite element method ($hp$-IPFEM) is proposed for elliptic interface problems in two and three dimensions on unfitted meshes. Error estimates in broken $H^1$ norm, which are optimal with respect to $h$ and subopt
We design an adaptive unfitted finite element method on the Cartesian mesh with hanging nodes. We derive an hp-reliable and efficient residual type a posteriori error estimate on K-meshes. A key ingredient is a novel hp-domain inverse estimate which