ترغب بنشر مسار تعليمي؟ اضغط هنا

A weak finite element method for elliptic problems in one space dimension

96   0   0.0 ( 0 )
 نشر من قبل Tie Zhang
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a weak finite element method for elliptic problems in one space dimension. Our analysis shows that this method has more advantages than the known weak Galerkin method proposed for multi-dimensional problems, for example, it has higher accuracy and the derived discrete equations can be solved locally, element by element. We derive the optimal error estimates in the discrete $H^1$-norm, the $L_2$-norm and $L_infty$-norm, respectively. Moreover, some superconvergence results are also given. Finally, numerical examples are provided to illustrate our theoretical analysis.



قيم البحث

اقرأ أيضاً

In this paper we propose a finite element method for solving elliptic equations with the observational Dirichlet boundary data which may subject to random noises. The method is based on the weak formulation of Lagrangian multiplier. We show the conve rgence of the random finite element error in expectation and, when the noise is sub-Gaussian, in the Orlicz 2- norm which implies the probability that the finite element error estimates are violated decays exponentially. Numerical examples are included.
440 - Haijun Wu , Yuanming Xiao 2010
An $hp$ version of interface penalty finite element method ($hp$-IPFEM) is proposed for elliptic interface problems in two and three dimensions on unfitted meshes. Error estimates in broken $H^1$ norm, which are optimal with respect to $h$ and subopt imal with respect to $p$ by half an order of $p$, are derived. Both symmetric and non-symmetric IPFEM are considered. Error estimates in $L^2$ norm are proved by the duality argument.
145 - Zhiming Chen , Ke Li , 2020
We design an adaptive unfitted finite element method on the Cartesian mesh with hanging nodes. We derive an hp-reliable and efficient residual type a posteriori error estimate on K-meshes. A key ingredient is a novel hp-domain inverse estimate which allows us to prove the stability of the finite element method under practical interface resolving mesh conditions and also prove the lower bound of the hp a posteriori error estimate. Numerical examples are included.
93 - Yanli Chen , Tie Zhang 2016
We propose a weak Galerkin(WG) finite element method for solving the one-dimensional Burgers equation. Based on a new weak variational form, both semi-discrete and fully-discrete WG finite element schemes are established and analyzed. We prove the ex istence of the discrete solution and derive the optimal order error estimates in the discrete $H^1$-norm and $L^2$-norm, respectively. Numerical experiments are presented to illustrate our theoretical analysis.
Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterat ive Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we present a technique that addresses such conditioning problems by constructing enhanced finite element spaces based on a cell aggregation technique. The presented method, called aggregated unfitted finite element method, is easy to implement, and can be used, in contrast to previous works, in Galerkin approximations of coercive problems with conforming Lagrangian finite element spaces. The mathematical analysis of the new method states that the condition number of the resulting linear system matrix scales as in standard finite elements for body-fitted meshes, without being affected by small cut cells, and that the method leads to the optimal finite element convergence order. These theoretical results are confirmed with 2D and 3D numerical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا