ترغب بنشر مسار تعليمي؟ اضغط هنا

Algebraic Structures and Stochastic Differential Equations driven by Levy processes

228   0   0.0 ( 0 )
 نشر من قبل Simon Malham
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct an efficient integrator for stochastic differential systems driven by Levy processes. An efficient integrator is a strong approximation that is more accurate than the corresponding stochastic Taylor approximation, to all orders and independent of the governing vector fields. This holds provided the driving processes possess moments of all orders and the vector fields are sufficiently smooth. Moreover the efficient integrator in question is optimal within a broad class of perturbations for half-integer global root mean-square orders of convergence. We obtain these results using the quasi-shuffle algebra of multiple iterated integrals of independent Levy processes.

قيم البحث

اقرأ أيضاً

We consider a general class of high order weak approximation schemes for stochastic differential equations driven by Levy processes with infinite activity. These schemes combine a compound Poisson approximation for the jump part of the Levy process w ith a high order scheme for the Brownian driven component, applied between the jump times. The overall approximation is analyzed using a stochastic splitting argument. The resulting error bound involves separate contributions of the compound Poisson approximation and of the discretization scheme for the Brownian part, and allows, on one hand, to balance the two contributions in order to minimize the computational time, and on the other hand, to study the optimal design of the approximating compound Poisson process. For driving processes whose Levy measure explodes near zero in a regularly varying way, this procedure allows to construct discretization schemes with arbitrary order of convergence.
147 - Yan Wang 2014
In this paper, we study almost periodic solutions for semilinear stochastic differential equations driven by L{e}vy noise with exponential dichotomy property. Under suitable conditions on the coefficients, we obtain the existence and uniqueness of bo unded solutions. Furthermore, this unique bounded solution is almost periodic in distribution under slightly stronger conditions. We also give two examples to illustrate our results.
We propose to study a new type of Backward stochastic differential equations driven by a family of It^os processes. We prove existence and uniqueness of the solution, and investigate stability and comparison theorem.
This paper deals with linear stochastic partial differential equations with variable coefficients driven by L{e}vy white noise. We first derive an existence theorem for integral transforms of L{e}vy white noise and prove the existence of generalized and mild solutions of second order elliptic partial differential equations. Furthermore, we discuss the generalized electric Schrodinger operator for different potential functions $V$.
We investigate the space-time regularity of the local time associated to Volterra-Levy processes, including Volterra processes driven by $alpha$-stable processes for $alphain(0,2]$. We show that the spatial regularity of the local time for Volterra-L evy process is $P$-a.s. inverse proportionally to the singularity of the associated Volterra kernel. We apply our results to the investigation of path-wise regularizing effects obtained by perturbaPtion of ODEs by a Volterra-Levy process which has sufficiently regular local time. Following along the lines of [15], we show existence, uniqueness and differentiablility of the flow associated to such equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا