ﻻ يوجد ملخص باللغة العربية
We construct an efficient integrator for stochastic differential systems driven by Levy processes. An efficient integrator is a strong approximation that is more accurate than the corresponding stochastic Taylor approximation, to all orders and independent of the governing vector fields. This holds provided the driving processes possess moments of all orders and the vector fields are sufficiently smooth. Moreover the efficient integrator in question is optimal within a broad class of perturbations for half-integer global root mean-square orders of convergence. We obtain these results using the quasi-shuffle algebra of multiple iterated integrals of independent Levy processes.
We consider a general class of high order weak approximation schemes for stochastic differential equations driven by Levy processes with infinite activity. These schemes combine a compound Poisson approximation for the jump part of the Levy process w
In this paper, we study almost periodic solutions for semilinear stochastic differential equations driven by L{e}vy noise with exponential dichotomy property. Under suitable conditions on the coefficients, we obtain the existence and uniqueness of bo
We propose to study a new type of Backward stochastic differential equations driven by a family of It^os processes. We prove existence and uniqueness of the solution, and investigate stability and comparison theorem.
This paper deals with linear stochastic partial differential equations with variable coefficients driven by L{e}vy white noise. We first derive an existence theorem for integral transforms of L{e}vy white noise and prove the existence of generalized
We investigate the space-time regularity of the local time associated to Volterra-Levy processes, including Volterra processes driven by $alpha$-stable processes for $alphain(0,2]$. We show that the spatial regularity of the local time for Volterra-L