ﻻ يوجد ملخص باللغة العربية
The source IGR J17200-3116 was discovered in the hard X-ray band by INTEGRAL. A periodic X-ray modulation at ~326 s was detected in its Swift light curves by our group (and subsequently confirmed by a Swift campaign). In this paper, we report on the analysis of all the Swift observations, which were collected between 2005 and 2011, and of a ~20 ks XMM-Newton pointing that was carried out in 2013 September. During the years covered by the Swift and XMM-Newton observations, the 1-10 keV fluxes range from ~1.5 to 4E-11 erg/cm^2/s. IGR J17200-3116 displays spectral variability as a function of the pulse phase and its light curves show at least one short (a few hundreds of seconds) dip, during which the flux dropped at 20-30% of the average level. Overall, the timing and spectral characteristics of IGR J17200-3116 point to an accreting neutron star in a high-mass system but, while the pulse-phase spectral variability can be accounted for by assuming a variable local absorbing column density, the origin of the dip is unclear. We discuss different possible explanations for this feature, favouring a transition to an ineffective accretion regime, instead of an enhanced absorption along the line of sight.
IGR J16195-4945 is a hard X-ray source discovered by INTEGRAL during the Core Program observations performed in 2003. We analyzed the X-ray emission of this source exploiting the Swift-BAT survey data from December 2004 to March 2015, and all the ava
IGR J00370+6122 is a high-mass X-ray binary, of which the primary is a B1 Ib star, whereas the companion is suggested to be a neutron star by the detection of 346-s pulsation in one-off 4-ks observation. To better understand the nature of the compact
Since its launch, the X-ray and gamma-ray observatory INTEGRAL satellite has revealed a new class of high-mass X-ray binaries (HMXB) displaying fast flares and hosting supergiant companion stars. Optical and infrared (OIR) observations in a multi-wav
We report on the discovery of X-ray pulsations in the Be/X-ray binary IGR J21343+4738 during an XMM-Newton observation. We obtained a barycentric corrected pulse period of 320.35+-0.06 seconds. The pulse profile displays a peak at low energy that fla
IGR J06074+2205 is a poorly studied X-ray source with a Be star companion. It has been proposed to belong to the group of Be/X-ray binaries. In Be/X-ray binaries, accretion onto the neutron star occurs via the transfer of material from the Be stars c