ترغب بنشر مسار تعليمي؟ اضغط هنا

Swift reveals the eclipsing nature of the high mass X-ray binary IGR~J16195-4945

115   0   0.0 ( 0 )
 نشر من قبل Valentina La Parola
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

IGR J16195-4945 is a hard X-ray source discovered by INTEGRAL during the Core Program observations performed in 2003. We analyzed the X-ray emission of this source exploiting the Swift-BAT survey data from December 2004 to March 2015, and all the available Swift-XRT pointed observations. The source is detected at a high significance level in the 123-month BAT survey data, with an average 15-150 keV flux of the source of ~1.6 mCrab. The timing analysis on the BAT data reveals with a significance higher than 6 standard deviations the presence of a modulated signal with a period of 3.945 d, that we interpret as the orbital period of the binary system. The folded light curve shows a flat profile with a narrow full eclipse lasting ~3.5% of the orbital period. We requested phase-constrained XRT observations to obtain a more detailed characterization of the eclipse in the soft X-ray range. Adopting resonable guess values for the mass and radius of the companion star, we derive a semi-major orbital axis of ~31 R_sun, equivalent to ~1.8 times the radius of the companion star. From these estimates and from the duration of the eclipse we derive an orbital inclination between 55 and 60 degrees. The broad band time-averaged XRT+BAT spectrum is well modeled with a strongly absorbed flat power law, with absorbing column N_H=7x 10^22 cm^(-2) and photon index Gamma=0.5, modified by a high energy exponential cutoff at E_cut=14 keV.

قيم البحث

اقرأ أيضاً

We report the results from pulsations and spectral analysis of a large number of observations of the HMXB pulsar IGR J18027--2016 with {it Swift}--XRT, carried out at different orbital phases. In some orbital phases, as seen in different XRT observat ions, the X-ray intensity is found to vary by a large factor, of about $sim$50. In all the observations with sufficient number of source X-ray photons, pulsations have been detected around the previously known pulse period of $sim$140 sec, When detected, the pulse profiles do not show any significant variation over a flux difference of a factor of $sim$3. The absorption column density is found to be large before and after the eclipse. We discuss various possible reasons for intensity and spectral variations in IGR J18027--2016, such as clumpy wind and hydrodynamic instabilities.
The source IGR J17200-3116 was discovered in the hard X-ray band by INTEGRAL. A periodic X-ray modulation at ~326 s was detected in its Swift light curves by our group (and subsequently confirmed by a Swift campaign). In this paper, we report on the analysis of all the Swift observations, which were collected between 2005 and 2011, and of a ~20 ks XMM-Newton pointing that was carried out in 2013 September. During the years covered by the Swift and XMM-Newton observations, the 1-10 keV fluxes range from ~1.5 to 4E-11 erg/cm^2/s. IGR J17200-3116 displays spectral variability as a function of the pulse phase and its light curves show at least one short (a few hundreds of seconds) dip, during which the flux dropped at 20-30% of the average level. Overall, the timing and spectral characteristics of IGR J17200-3116 point to an accreting neutron star in a high-mass system but, while the pulse-phase spectral variability can be accounted for by assuming a variable local absorbing column density, the origin of the dip is unclear. We discuss different possible explanations for this feature, favouring a transition to an ineffective accretion regime, instead of an enhanced absorption along the line of sight.
IGR J16493-4348 is an eclipsing supergiant high-mass X-ray binary (sgHMXB), where accretion onto the compact object occurs via the radially outflowing stellar wind of its early B-type companion. We present an analysis of the systems X-ray variability and periodic modulation using pointed observations (2.5-25 keV) and Galactic bulge scans (2-10 keV) from the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA), along with Swift Burst Alert Telescope (BAT) 70-month snapshot (14-195 keV) and transient monitor (15-50 keV) observations. The orbital eclipse profiles in the PCA bulge scans and BAT light curves are modeled using asymmetric and symmetric step and ramp functions. We obtain an improved orbital period measurement of 6.7828 $pm$ 0.0004 days from an observed minus calculated (O-C) analysis of mid-eclipse times derived from the BAT transient monitor and PCA scan data. No evidence is found for the presence of a strong photoionization or accretion wake. We refine the superorbital period to 20.067 $pm$ 0.009 days from the discrete Fourier transform (DFT) of the BAT transient monitor light curve. A pulse period of 1093.1036 $pm$ 0.0004 s is measured from a pulsar timing analysis using pointed PCA observations spanning $sim$1.4 binary orbits. We present pulse times of arrival (ToAs), circular and eccentric timing models, and calculations of the systems Keplerian binary orbital parameters. We derive an X-ray mass function of $f_{x}(M)$ $=$ 13.2$^{+2.4}_{-2.5}$ $M_{odot}$ and find a spectral type of B0.5 Ia for the supergiant companion through constraints on the mass and radius of the donor. Measurements of the eclipse half-angle and additional parameters describing the system geometry are provided.
282 - E. Bozzo , P. Pjanka , P. Romano 2016
In this paper, we report on the available X-ray data collected by INTEGRAL, Swift, and XMM-Newton during the first outburst of the INTEGRAL transient IGR J17451-3022, discovered in 2014 August. The monitoring observations provided by the JEM-X instru ments on-board INTEGRAL and the Swift/XRT showed that the event lasted for about 9 months and that the emission of the source remained soft for the entire period. The source emission is dominated by a thermal component (kT~1.2 keV), most likely produced by an accretion disk. The XMM-Newton observation carried out during the outburst revealed the presence of multiple absorption features in the soft X-ray emission that could be associated to the presence of an ionized absorber lying above the accretion disk, as observed in many high-inclination low mass X-ray binaries. The XMM-Newton data also revealed the presence of partial and rectangular X-ray eclipses (lasting about 820 s), together with dips. The latter can be associated with increases in the overall absorption column density in the direction of the source. The detection of two consecutive X-ray eclipses in the XMM-Newton data allowed us to estimate the source orbital period at 22620.5(-1.8,+2.0) s (1{sigma} c.l.).
We report on the temporal and spectral properties of the HMXB IGR J16283-4838 in the hard X-ray band. We searched the first 88 months of Swift BAT survey data for long-term periodic modulations. We also investigated the broad band (0.2--150 keV) spec tral properties of IGR J16283--4838 complementing the BAT dataset with the soft X-ray data from the available Swift-XRT pointed observations. The BAT light curve of IGR J16283-4838 revealed a periodic modulation at P_o=287.6+7-1.7 days (with a significance higher than 4 standard deviations). The profile of the light curve folded at P_o shows a sharp peak lasting ~ 12 d, over a flat plateau. The long-term light curve shows also a ~300 d interval of prolonged enhanced emission. The observed phenomenology is suggestive of a Be nature of IGR J16283-4838, where the narrow periodic peaks and the ~300 d outburst can be interpreted as Type I and Type II outbursts, respectively. The broad band 0.2-150 keV spectrum can be described with an absorbed power-law and a steepening in the BAT energy range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا