ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of the accretion mechanisms of the High Mass X-ray Binary IGR J00370+6122

88   0   0.0 ( 0 )
 نشر من قبل Nagomi Uchida Mr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

IGR J00370+6122 is a high-mass X-ray binary, of which the primary is a B1 Ib star, whereas the companion is suggested to be a neutron star by the detection of 346-s pulsation in one-off 4-ks observation. To better understand the nature of the compact companion, the present work performs timing and spectral studies of the X-ray data of this object, taken with XMM-Newton, Swift, Suzaku, RXTE, and INTEGRAL. In the XMM-Newton data, a sign of coherent 674 s pulsation was detected, for which the previous 346-s period may be the 2nd harmonic. The spectra exhibited the harder when brighter trend in the 1$-$10 keV range, and a flat continuum without clear cutoff in the 10$-$80 keV range. These properties are both similar to those observed from several low-luminosity accreting pulsars, including X Persei in particular. Thus, the compact object in IGR J00370+6122 is considered to be a magnetized neutron star with a rather low luminosity. The orbital period was refined to $15.6649 pm 0.0014$ d. Along the orbit, the luminosity changes by 3 orders of magnitude, involving a sudden drop from $sim 4 times 10^{33}$ to $sim 1times10^{32}$ erg s$^{-1}$ at an orbital phase of 0.3 (and probably vice verse at 0.95). Although these phenomena cannot be explained by a simple Hoyle-Lyttleton accretion from the primarys stellar winds, they can be explained when incorporating the propeller effect with a strong dipole magnetic field of $sim 5 times10^{13}$ G. Therefore, the neutron star in IGR J00370+6122 may have a stronger magnetic field compared to ordinary X-ray pulsars.

قيم البحث

اقرأ أيضاً

The source IGR J17200-3116 was discovered in the hard X-ray band by INTEGRAL. A periodic X-ray modulation at ~326 s was detected in its Swift light curves by our group (and subsequently confirmed by a Swift campaign). In this paper, we report on the analysis of all the Swift observations, which were collected between 2005 and 2011, and of a ~20 ks XMM-Newton pointing that was carried out in 2013 September. During the years covered by the Swift and XMM-Newton observations, the 1-10 keV fluxes range from ~1.5 to 4E-11 erg/cm^2/s. IGR J17200-3116 displays spectral variability as a function of the pulse phase and its light curves show at least one short (a few hundreds of seconds) dip, during which the flux dropped at 20-30% of the average level. Overall, the timing and spectral characteristics of IGR J17200-3116 point to an accreting neutron star in a high-mass system but, while the pulse-phase spectral variability can be accounted for by assuming a variable local absorbing column density, the origin of the dip is unclear. We discuss different possible explanations for this feature, favouring a transition to an ineffective accretion regime, instead of an enhanced absorption along the line of sight.
Since its launch, the X-ray and gamma-ray observatory INTEGRAL satellite has revealed a new class of high-mass X-ray binaries (HMXB) displaying fast flares and hosting supergiant companion stars. Optical and infrared (OIR) observations in a multi-wav elength context are essential to understand the nature and evolution of these newly discovered celestial objects. The goal of this multiwavelength study (from ultraviolet to infrared) is to characterise the properties of IGR J16465-4507, to confirm its HMXB nature and that it hosts a supergiant star. We analysed all OIR, photometric and spectroscopic observations taken on this source, carried out at ESO facilities. Using spectroscopic data, we constrained the spectral type of the companion star between B0.5 and B1 Ib, settling the debate on the true nature of this source. We measured a high rotation velocity of v = 320 +/- 8 km/s from fitting absorption and emission lines in a stellar spectral model. We then built a spectral energy distribution from photometric observations to evaluate the origin of the different components radiating at each energy range. We finally show that, having accurately determined the spectral type of the early-B supergiant in IGR J16465-4507, we firmly support its classification as an intermediate supergiant fast X-ray transient (SFXT).
We report on Nuclear Spectroscopic Telescope Array (NuSTAR), Neil Gehrels Swift Observatory (Swift) X-ray Telescope (XRT) and Swift Burst Alert Telescope (BAT) observations of IGR J16493-4348, a wind-fed Supergiant X-ray Binary (SGXB) showing signifi cant superorbital variability. From a discrete Fourier transform of the BAT light curve, we refine its superorbital period to be 20.058 $pm$ 0.007 days. The BAT dynamic power spectrum and a fractional root mean square analysis both show strong variations in the amplitude of the superorbital modulation, but no observed changes in the period were found. The superorbital modulation is significantly weaker between MJD 55,700 and MJD 56,300. The joint NuSTAR and XRT observations, which were performed near the minimum and maximum of one cycle of the 20 day superorbital modulation, show that the flux increases by more than a factor of two between superorbital minimum and maximum. We find no significant changes in the 3-50 keV pulse profiles between superorbital minimum and maximum, which suggests a similar accretion regime. Modeling the pulse-phase averaged spectra we find a possible Fe K$alpha$ emission line at 6.4 keV at superorbital maximum. The feature is not significant at superorbital minimum. While we do not observe any significant differences between the pulse-phase averaged spectral continua apart from the overall flux change, we find that the hardness ratio near the broad main peak of the pulse profile increases from superorbital minimum to maximum. This suggests the spectral shape hardens with increasing luminosity. We discuss different mechanisms that might drive the observed superorbital modulation.
We report the results from pulsations and spectral analysis of a large number of observations of the HMXB pulsar IGR J18027--2016 with {it Swift}--XRT, carried out at different orbital phases. In some orbital phases, as seen in different XRT observat ions, the X-ray intensity is found to vary by a large factor, of about $sim$50. In all the observations with sufficient number of source X-ray photons, pulsations have been detected around the previously known pulse period of $sim$140 sec, When detected, the pulse profiles do not show any significant variation over a flux difference of a factor of $sim$3. The absorption column density is found to be large before and after the eclipse. We discuss various possible reasons for intensity and spectral variations in IGR J18027--2016, such as clumpy wind and hydrodynamic instabilities.
IGR J16195-4945 is a hard X-ray source discovered by INTEGRAL during the Core Program observations performed in 2003. We analyzed the X-ray emission of this source exploiting the Swift-BAT survey data from December 2004 to March 2015, and all the ava ilable Swift-XRT pointed observations. The source is detected at a high significance level in the 123-month BAT survey data, with an average 15-150 keV flux of the source of ~1.6 mCrab. The timing analysis on the BAT data reveals with a significance higher than 6 standard deviations the presence of a modulated signal with a period of 3.945 d, that we interpret as the orbital period of the binary system. The folded light curve shows a flat profile with a narrow full eclipse lasting ~3.5% of the orbital period. We requested phase-constrained XRT observations to obtain a more detailed characterization of the eclipse in the soft X-ray range. Adopting resonable guess values for the mass and radius of the companion star, we derive a semi-major orbital axis of ~31 R_sun, equivalent to ~1.8 times the radius of the companion star. From these estimates and from the duration of the eclipse we derive an orbital inclination between 55 and 60 degrees. The broad band time-averaged XRT+BAT spectrum is well modeled with a strongly absorbed flat power law, with absorbing column N_H=7x 10^22 cm^(-2) and photon index Gamma=0.5, modified by a high energy exponential cutoff at E_cut=14 keV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا