ترغب بنشر مسار تعليمي؟ اضغط هنا

Closed geodesics with local homology in maximal degree on non-compact manifolds

221   0   0.0 ( 0 )
 نشر من قبل Marco Mazzucchelli
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that, on a complete and possibly non-compact Riemannian manifold of dimension at least 2 without close conjugate points at infinity, the existence of a closed geodesic with local homology in maximal degree and maximal index growth under iteration forces the existence of infinitely many closed geodesics. For closed manifolds, this was a theorem due to Hingston.



قيم البحث

اقرأ أيضاً

We study the existence of closed geodesics on compact Riemannian orbifolds, and on noncompact Riemannian manifolds in the presence of a cocompact, isometric group action. We show that every noncontractible Riemannian manifold which admits such an act ion, and every odd-dimensional, compact Riemannian orbifold has a nontrivial closed geodesic.
We study the asymptotics of the number N(t) of geometrically distinct closed geodesics of a Riemannian or Finsler metric on a connected sum of two compact manifolds of dimension at least three with non-trivial fundamental groups and apply this result to the prime decomposition of a three-manifold. In particular we show that the function N(t) grows at least like the prime numbers on a compact 3-manifold with infinite fundamental group. It follows that a generic Riemannian metric on a compact 3-manifold has infinitely many geometrically distinct closed geodesics. We also consider the case of a connected sum of a compact manifold with positive first Betti number and a simply-connected manifold which is not homeomorphic to a sphere.
177 - J.D.S. Jones , J. McCleary 2014
Let $M$ be a closed simply connected smooth manifold. Let $F_p$ be the finite field with $p$ elements where $p> 0$ is a prime integer. Suppose that $M$ is an $F_p$-elliptic space in the sense of [FHT91]. We prove that if the cohomology algebra $H^*(M , F_p)$ cannot be generated (as an algebra) by one element, then any Riemannian metric on $M$ has an infinite number of geometrically distinct closed geodesics. The starting point is a classical theorem of Gromoll and Meyer [GM69]. The proof uses string homology, in particular the spectral sequence of [CJY04], the main theorem of [McC87], and the structure theorem for elliptic Hopf algebras over $F_p$ from [FHT91].
Manifolds all of whose geodesics are closed have been studied a lot, but there are only few examples known. The situation is different if one allows in addition for orbifold singularities. We show, nevertheless, that the abundance of new examples is restricted to even dimensions. As one key ingredient we provide a characterization of orientable manifolds among orientable orbifolds in terms of characteristic classes.
This is the first in a series of papers dedicated to the study of Poisson manifolds of compact types (PMCTs). This notion encompasses several classes of Poisson manifolds defined via properties of their symplectic integrations. In this first paper we establish some fundamental properties of PMCTs, which already show that they are the analogues of compact symplectic manifolds, thus placing them in a prominent position among all Poisson manifolds. For instance, their Poisson cohomology behaves very much like the de Rham cohomology of compact symplectic manifolds (Hodge decomposition, non-degenerate Poincare duality pairing, etc.) and the Moser trick can be adapted to PMCTs. More important, we find unexpected connections between PMCTs and Symplectic Topology: PMCTs are related with the theory of Lagrangian fibrations and we exhibit a construction of a nontrivial PMCT related to a classical question on the topology of the orbits of a free symplectic circle action. In subsequent papers, we will establish deep connections between PMCTs and integral affine geometry, Hamiltonian $G$-spaces, foliation theory, Lie theory and symplectic gerbes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا