ﻻ يوجد ملخص باللغة العربية
We show that, on a complete and possibly non-compact Riemannian manifold of dimension at least 2 without close conjugate points at infinity, the existence of a closed geodesic with local homology in maximal degree and maximal index growth under iteration forces the existence of infinitely many closed geodesics. For closed manifolds, this was a theorem due to Hingston.
We study the existence of closed geodesics on compact Riemannian orbifolds, and on noncompact Riemannian manifolds in the presence of a cocompact, isometric group action. We show that every noncontractible Riemannian manifold which admits such an act
We study the asymptotics of the number N(t) of geometrically distinct closed geodesics of a Riemannian or Finsler metric on a connected sum of two compact manifolds of dimension at least three with non-trivial fundamental groups and apply this result
Let $M$ be a closed simply connected smooth manifold. Let $F_p$ be the finite field with $p$ elements where $p> 0$ is a prime integer. Suppose that $M$ is an $F_p$-elliptic space in the sense of [FHT91]. We prove that if the cohomology algebra $H^*(M
Manifolds all of whose geodesics are closed have been studied a lot, but there are only few examples known. The situation is different if one allows in addition for orbifold singularities. We show, nevertheless, that the abundance of new examples is
This is the first in a series of papers dedicated to the study of Poisson manifolds of compact types (PMCTs). This notion encompasses several classes of Poisson manifolds defined via properties of their symplectic integrations. In this first paper we