ترغب بنشر مسار تعليمي؟ اضغط هنا

Unravelling the role of the interface for spin injection into organic semiconductors

138   0   0.0 ( 0 )
 نشر من قبل Pierre Seneor
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Whereas spintronics brings the spin degree of freedom to electronic devices, molecular/organic electronics adds the opportunity to play with the chemical versatility. Here we show how, as a contender to commonly used inorganic materials, organic/molecular based spintronics devices can exhibit very large magnetoresistance and lead to tailored spin polarizations. We report on giant tunnel magnetoresistance of up to 300% in a (La,Sr)MnO3/Alq3/Co nanometer size magnetic tunnel junction. Moreover, we propose a spin dependent transport model giving a new understanding of spin injection into organic materials/molecules. Our findings bring a new insight on how one could tune spin injection by molecular engineering and paves the way to chemical tailoring of the properties of spintronics devices.



قيم البحث

اقرأ أيضاً

Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in spin injection mechanism from a magnetic tunn el junction into a semiconductor is still under debate. In this letter, we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of $n$-Ge. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from 200 K up to room temperature. In this regime, the spin signal is reduced down to a value compatible with spin diffusion model. More interestingly, we demonstrate in this regime a significant modulation of the spin signal by spin pumping generated by ferromagnetic resonance and also by applying a back-gate voltage which are clear manifestations of spin current and accumulation in the germanium conduction band.
117 - Z. G. Yu , M. E. Flatte 2002
We derive a drift-diffusion equation for spin polarization in semiconductors by consistently taking into account electric-field effects and nondegenerate electron statistics. We identify a high-field diffusive regime which has no analogue in metals. In this regime there are two distinct spin diffusion lengths. Furthermore, spin injection from a ferromagnetic metal into a semiconductor is enhanced by several orders of magnitude and spins can be transported over distances much greater than the low-field spin diffusion length.
Ferromagnetic metal-organic semiconductor (FM-OSC) hybrid interfaces have shown to play an important role for spin injection in organic spintronics. Here, 11,11,12,12-tetracyanonaptho-2,6-quinodimethane (TNAP) is introduced as an interfacial layer in Co-OSCs heterojunction with an aim to tune the spin injection. The Co/TNAP interface is investigated by use of X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS), near edge X-ray absorption fine structure (NEXAFS) and X-ray magnetic circular dichroism (XMCD). Hybrid interface states (HIS) are observed at Co/TNAP interface resulting from chemical interaction between Co and TNAP. The energy level alignment at Co/TNAP/OSCs interface is also obtained, and a reduction of the hole injection barrier is demonstrated. XMCD results confirm sizeable spin polarization at the Co/TNAP hybrid interface.
Organic semiconductors have generated considerable interest for their potential for creating inexpensive and flexible devices easily processed on a large scale [1-11]. However technological applications are currently limited by the low mobility of th e charge carriers associated with the disorder in these materials [5-8]. Much effort over the past decades has therefore been focused on optimizing the organisation of the material or the devices to improve carrier mobility. Here we take a radically different path to solving this problem, namely by injecting carriers into states that are hybridized to the vacuum electromagnetic field. These are coherent states that can extend over as many as 10^5 molecules and should thereby favour conductivity in such materials. To test this idea, organic semiconductors were strongly coupled to the vacuum electromagnetic field on plasmonic structures to form polaritonic states with large Rabi splittings ca. 0.7 eV. Conductivity experiments show that indeed the current does increase by an order of magnitude at resonance in the coupled state, reflecting mostly a change in field-effect mobility as revealed when the structure is gated in a transistor configuration. A theoretical quantum model is presented that confirms the delocalization of the wave-functions of the hybridized states and the consequences on the conductivity. While this is a proof-of-principle study, in practice conductivity mediated by light-matter hybridized states is easy to implement and we therefore expect that it will be used to improve organic devices. More broadly our findings illustrate the potential of engineering the vacuum electromagnetic environment to modify and to improve properties of materials.
As a methodology for controlling the carrier transport of topological insulators (TIs), a flexible tuning in carrier number on the surface states (SSs) of three dimensional TIs by surface modifications using organic molecules is described. The princi ple of the carrier tuning and its type conversion of TIs presented in this research are based on the charge transfer of holes or electrons at the TI/organic molecule interface. By employing 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as an electron acceptor or tetracyanoquinodimethane (TCNQ) as a donor for n- and p- Bi2-xSbxTe3-ySey (BSTS) single crystals, successful carrier conversion from n to p and its reverse mode is demonstrated depending on the electron affinities of the molecules. The present method provides a nondestructive and efficient method for local tuning in carrier density of TIs, and is useful for future applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا