ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Properties of a Which-Way Detector

101   0   0.0 ( 0 )
 نشر من قبل Romeu Rossi Jr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore quantum properties of a which-way detector using thr


قيم البحث

اقرأ أيضاً

Quantum trajectory-based descriptions of interference between two coherent stationary waves in a double-slit experiment are presented, as given by the de Broglie-Bohm (dBB) and modified de Broglie-Bohm (MdBB) formulations of quantum mechanics. In the dBB trajectory representation, interference between two spreading wave packets can be shown also as resulting from motion of particles. But a trajectory explanation for interference between stationary states is so far not available in this scheme. We show that both the dBB and MdBB trajectories are capable of producing the interference pattern for stationary as well as wave packet states. However, the dBB representation is found to provide the `which-way information that helps to identify the hole through which the particle emanates. On the other hand, the MdBB representation does not provide any which-way information while giving a satisfactory explanation of interference phenomenon in tune with the de Broglies wave particle duality. By counting the trajectories reaching the screen, we have numerically evaluated the intensity distribution of the fringes and found very good agreement with the standard results.
A which-way measurement in Youngs double-slit will destroy the interference pattern. Bohr claimed this complementarity between wave- and particle behaviour is enforced by Heisenbergs uncertainty principle: distinguishing two positions a distance s ap art transfers a random momentum q sim hbar/s to the particle. This claim has been subject to debate: Scully et al. asserted that in some situations interference can be destroyed with no momentum transfer, while Storey et al. asserted that Bohrs stance is always valid. We address this issue using the experimental technique of weak measurement. We measure a distribution for q that spreads well beyond [-hbar/s, hbar/s], but nevertheless has a variance consistent with zero. This weakvalued momentum-transfer distribution P_{wv}(q) thus reflects both sides of the debate.
Making a which-way measurement (WWM) to identify which slit a particle goes through in a double-slit apparatus will reduce the visibility of interference fringes. There has been a long-standing controversy over whether this can be attributed to an un controllable momentum transfer. To date, no experiment has characterised the momentum change in a way that relates quantitatively to the loss of visibility. Here, by reconstructing the Bohmian trajectories of single photons, we experimentally obtain the distribution of momentum change, which is observed to be not a momentum kick that occurs at the point of the WWM, but nonclassically accumulates during the propagation of the photons. We further confirm a quantitative relation between the loss of visibility consequent on a WWM and the total (late-time) momentum disturbance. Our results emphasize the role of the Bohmian momentum in giving an intuitive picture of wave-particle duality and complementarity.
123 - Hua Lu , Chi-Hang Fred Fung , 2013
In a two-way deterministic quantum key distribution (DQKD) protocol, Bob randomly prepares qubits in one of four states and sends them to Alice. To encode a bit, Alice performs an operation on each received qubit and returns it to Bob. Bob then measu res the backward qubits to learn about Alices operations and hence the key bits. Recently, we proved the unconditional security of the final key of this protocol in the ideal device setting. In this paper, we prove that two-way DQKD protocols are immune to all detector side channel attacks at Bobs side, while we assume ideal detectors at Alices side for error testing. Our result represents a step forward in making DQKD protocols secure against general detector side channel attacks.
150 - J. Huwer , J. Ghosh , N. Piro 2011
We use a single trapped 40Ca+ ion as a resonant, polarization-sensitive absorber to detect and characterize the entanglement of tunable narrowband photon pairs from a spontaneous parametric down-conversion source. Single-photon absorption is marked b y a quantum jump in the ion and heralded by coincident detection of the partner photon. For three polarization basis settings of absorption and detection of the herald, we find maximum coincidences always for orthogonal polarizations. The polarization entanglement is further evidenced by tomographic reconstruction of the biphoton quantum state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا