ﻻ يوجد ملخص باللغة العربية
Making a which-way measurement (WWM) to identify which slit a particle goes through in a double-slit apparatus will reduce the visibility of interference fringes. There has been a long-standing controversy over whether this can be attributed to an uncontrollable momentum transfer. To date, no experiment has characterised the momentum change in a way that relates quantitatively to the loss of visibility. Here, by reconstructing the Bohmian trajectories of single photons, we experimentally obtain the distribution of momentum change, which is observed to be not a momentum kick that occurs at the point of the WWM, but nonclassically accumulates during the propagation of the photons. We further confirm a quantitative relation between the loss of visibility consequent on a WWM and the total (late-time) momentum disturbance. Our results emphasize the role of the Bohmian momentum in giving an intuitive picture of wave-particle duality and complementarity.
A which-way measurement in Youngs double-slit will destroy the interference pattern. Bohr claimed this complementarity between wave- and particle behaviour is enforced by Heisenbergs uncertainty principle: distinguishing two positions a distance s ap
We provide support for the claim that momentum is conserved for individual events in the electron double slit experiment. The natural consequence is that a physical mechanism is responsible for this momentum exchange, but that even if the fundamental
The resolution of a conventional telescope used to image visible-light synchrotron radiation is often limited by diffraction effects. To improve resolution, the double-slit interferometer method was developed at KEK and has since become popular aroun
A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (``slits) of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying
Heisenbergs position-measurement--momentum-disturbance relation is derivable from the uncertainty relation $sigma(q)sigma(p) geq hbar/2$ only for the case when the particle is initially in a momentum eigenstate. Here I derive a new measurement--distu