ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel Far-IR counterparts of SDSS galaxies: Analysis of commonly used Star Formation Rate estimates

59   0   0.0 ( 0 )
 نشر من قبل Helena Dominguez Sanchez
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a hundred of galaxies from the spectroscopic Sloan Digital Sky Survey with individual detections in the Far-Infrared Herschel PACS bands (100 or 160 $mu$m) and in the GALEX Far-UltraViolet band up to z$sim$0.4 in the COSMOS and Lockman Hole fields. The galaxies are divided into 4 spectral and 4 morphological types. For the star forming and unclassifiable galaxies we calculate dust extinctions from the UV slope, the H$alpha$/H$beta$ ratio and the $L_{rm IR}/L_{rm UV}$ ratio. There is a tight correlation between the dust extinction and both $L_{rm IR}$ and metallicity. We calculate SFR$_{total}$ and compare it with other SFR estimates (H$alpha$, UV, SDSS) finding a very good agreement between them with smaller dispersions than typical SFR uncertainties. We study the effect of mass and metallicity, finding that it is only significant at high masses for SFR$_{Halpha}$. For the AGN and composite galaxies we find a tight correlation between SFR and L$_{IR}$ ($sigmasim$0.29), while the dispersion in the SFR - L$_{UV}$ relation is larger ($sigmasim$0.57). The galaxies follow the prescriptions of the Fundamental Plane in the M-Z-SFR space.

قيم البحث

اقرأ أيضاً

80 - Volker Heesen 2014
We study the spatially resolved Radio Continuum-Star Formation Rate (RC-SFR) relation using state-of-the-art star-formation (SF) tracers in a sample of 17 THINGS galaxies. We use hybrid Sigma_SFR maps (GALEX FUV plus Spitzer 24 mu), RC maps at 22/18 cm from the WSRT SINGS survey, and H-alpha maps to correct for thermal RC emission. We compare azimuthally averaged radial profiles of the RC and FUV/MIR-based Sigma_SFR maps and study pixel-by-pixel correlations at fixed linear scales of 1.2 and 0.7 kpc. The ratio of the integrated SFRs from the RC emission to that of the FUV/MIR-based SF tracers is R_int = 0.78 +/- 0.38, consistent with Condons relation. We find a tight correlation between the radial profiles of the radio and FUV/MIR-based Sigma_SFR for the entire extent of the disk. The ratio R of the azimuthally averaged radio to FUV/MIR-based Sigma_SFR agrees with the integrated ratio with only small quasi-random fluctuations as function of radius. Pixel-by-pixel plots show a tight correlation in log-log diagrams of radio to FUV/MIR-based Sigma_SFR, with a typical standard deviation of a factor of two. Averaged over our sample we find (Sigma_SFR)_RC ~ (Sigma_SFR)_hyb^{0.63+/-0.25} implying that data points with high Sigma_SFR are relatively radio dim, whereas the reverse is true for low Sigma_SFR. We interpret this as a result of spectral ageing of CRe, which is supported by the radio spectral index: data points dominated by young CRe are relatively radio dim, those dominated by old CRe are relatively radio bright. The ratio of radio to FUV/MIR-based integrated SFR is independent of global galaxy parameters, suggesting that we can use RC emission as a universal SF tracer for galaxies, if we restrict ourselves to global or azimuthally averaged measurements. A magnetic field-SFR relation, B ~ SFR_hyb^{0.30+/-0.02}, holding both globally and locally, can explain our results. (abridged)
We use the James Clerk Maxwell Telescopes SCUBA-2 camera to image a 400 arcmin^2 area surrounding the GOODS-N field. The 850 micron rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we co nstruct an 850 micron source catalog to 2 mJy containing 49 sources detected above the 4-sigma level. We use an ultradeep (11.5 uJy at 5-sigma) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9 arcmin radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio flux dependent K-z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 solar masses per year to z~6. We find galaxies with SFRs up to ~6,000 solar masses per year over the redshift range z=1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 solar masses per year.
We present a statistical detection of 1.5 GHz radio continuum emission from a sample of faint z~4 Lyman-break galaxies (LBGs). LBGs are key tracers of the high-redshift star formation history and important sources of UV photons that ionized the inter galactic medium in the early universe. In order to better constrain the extinction and intrinsic star formation rate (SFR) of high-redshift LBGs, we combine the latest ultradeep Karl G. Jansky Very Large Array 1.5 GHz radio image and the Hubble Space Telescope Advance Camera for Surveys (ACS) optical images in the Great Observatories Origins Deep Survey-North. We select a large sample of 1771 z~4 LBGs from the ACS catalogue using $bband$-dropout color criteria. Our LBG samples have $iband$~25-28 (AB), ~0-3 magnitudes fainter than M*_UV at z~4. In our stacked radio images, we find the LBGs to be point-like under our 2 angular resolution. We measure their mean 1.5 GHz flux by stacking the measurements on the individual objects. We achieve a statistical detection of $S_{1.5GHz}$=0.210+-0.075 uJy at ~3 sigma, first time on such a faint LBG population at z~4. The measurement takes into account the effects of source size and blending of multiple objects. The detection is visually confirmed by stacking the radio images of the LBGs, and the uncertainty is quantified with Monte Carlo simulations on the radio image. The stacked radio flux corresponds to an intrinsic SFR of 16.0+-5.7 M/yr, which is 2.8X the SFR derived from the rest-frame UV continuum luminosity. This factor of 2.8 is in excellent agreement with the extinction correction derived from the observed UV continuum spectral slope, using the local calibration of meurer99. This result supports the use of the local calibration on high-redshift LBGs for deriving the extinction correction and SFR, and also disfavors a steep reddening curve such as that of the Small Magellanic Cloud.
We present a new suite of hydrodynamical simulations and use it to study, in detail, black hole and galaxy properties. The high time, spatial and mass resolution, and realistic orbits and mass ratios, down to 1:6 and 1:10, enable us to meaningfully c ompare star formation rate (SFR) and BH accretion rate (BHAR) timescales, temporal behaviour and relative magnitude. We find that (i) BHAR and galaxy-wide SFR are typically temporally uncorrelated, and have different variability timescales, except during the merger proper, lasting ~0.2-0.3 Gyr. BHAR and nuclear (<100 pc) SFR are better correlated, and their variability are similar. Averaging over time, the merger phase leads typically to an increase by a factor of a few in the BHAR/SFR ratio. (ii) BHAR and nuclear SFR are intrinsically proportional, but the correlation lessens if the long-term SFR is measured. (iii) Galaxies in the remnant phase are the ones most likely to be selected as systems dominated by an active galactic nucleus (AGN), because of the long time spent in this phase. (iv) The timescale over which a given diagnostic probes the SFR has a profound impact on the recovered correlations with BHAR, and on the interpretation of observational data.
The star formation rate (SFR) of the Milky Way remains poorly known, with often-quoted values ranging from 1 to 10 solar masses per year. This situation persists despite the potential for the Milky Way to serve as the ultimate SFR calibrator for exte rnal galaxies. We show that various estimates for the Galactic SFR are consistent with one another once they have been normalized to the same initial mass function (IMF) and massive star models, converging to 1.9 +/- 0.4 M_sun/yr. However, standard SFR diagnostics are vulnerable to systematics founded in the use of indirect observational tracers sensitive only to high-mass stars. We find that absolute SFRs measured using resolved low/intermediate-mass stellar populations in Galactic H II regions are systematically higher by factors of ~2-3 as compared with calibrations for SFRs measured from mid-IR and radio emission. We discuss some potential explanations for this discrepancy and conclude that it could be allayed if (1) the power-law slope of the IMF for intermediate-mass (1.5 M_sun < m < 5 M_sun) stars were steeper than the Salpeter slope, or (2) a correction factor was applied to the extragalactic 24 micron SFR calibrations to account for the duration of star formation in individual mid-IR-bright H II regions relative to the lifetimes of O stars. Finally, we present some approaches for testing if a Galactic SFR of ~2 M_sun/yr is consistent with what we would measure if we could view the Milky Way as external observers. Using luminous radio supernova remnants and X-ray point sources, we find that the Milky Way deviates from expectations at the 1-3 sigma level, hinting that perhaps the Galactic SFR is overestimated or extragalactic SFRs need to be revised upwards.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا