ترغب بنشر مسار تعليمي؟ اضغط هنا

The Radio Continuum-Star Formation Rate Relation in WSRT SINGS Galaxies

81   0   0.0 ( 0 )
 نشر من قبل Volker Heesen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Volker Heesen




اسأل ChatGPT حول البحث

We study the spatially resolved Radio Continuum-Star Formation Rate (RC-SFR) relation using state-of-the-art star-formation (SF) tracers in a sample of 17 THINGS galaxies. We use hybrid Sigma_SFR maps (GALEX FUV plus Spitzer 24 mu), RC maps at 22/18 cm from the WSRT SINGS survey, and H-alpha maps to correct for thermal RC emission. We compare azimuthally averaged radial profiles of the RC and FUV/MIR-based Sigma_SFR maps and study pixel-by-pixel correlations at fixed linear scales of 1.2 and 0.7 kpc. The ratio of the integrated SFRs from the RC emission to that of the FUV/MIR-based SF tracers is R_int = 0.78 +/- 0.38, consistent with Condons relation. We find a tight correlation between the radial profiles of the radio and FUV/MIR-based Sigma_SFR for the entire extent of the disk. The ratio R of the azimuthally averaged radio to FUV/MIR-based Sigma_SFR agrees with the integrated ratio with only small quasi-random fluctuations as function of radius. Pixel-by-pixel plots show a tight correlation in log-log diagrams of radio to FUV/MIR-based Sigma_SFR, with a typical standard deviation of a factor of two. Averaged over our sample we find (Sigma_SFR)_RC ~ (Sigma_SFR)_hyb^{0.63+/-0.25} implying that data points with high Sigma_SFR are relatively radio dim, whereas the reverse is true for low Sigma_SFR. We interpret this as a result of spectral ageing of CRe, which is supported by the radio spectral index: data points dominated by young CRe are relatively radio dim, those dominated by old CRe are relatively radio bright. The ratio of radio to FUV/MIR-based integrated SFR is independent of global galaxy parameters, suggesting that we can use RC emission as a universal SF tracer for galaxies, if we restrict ourselves to global or azimuthally averaged measurements. A magnetic field-SFR relation, B ~ SFR_hyb^{0.30+/-0.02}, holding both globally and locally, can explain our results. (abridged)

قيم البحث

اقرأ أيضاً

There is a remarkably tight relation between the observationally inferred dust masses and star-formation rates (SFRs) of SDSS galaxies, Mdust $propto$ SFR$^{1.11}$ (Da Cunha et al. 2010). Here we extend the Mdust-SFR relation to the high end and show that it bends over at very large SFRs (i.e., dust masses are lower than predicted for a given SFR). We identify several distinct evolutionary processes in the diagram: (1) A star-bursting phase in which dust builds up rapidly at early times. The maximum attainable dust mass in this process is the cause of the bend-over of the relation. A high dust-formation efficiency, a bottom-light initial mass function, and negligible supernova shock dust destruction are required to produce sufficiently high dust masses. (2) A quiescent star-forming phase in which the subsequent parallel decline in dust mass and SFR gives rise to the Mdust-SFR relation, through astration and dust destruction. The dust-to-gas ratio is approximately constant along the relation. We show that the power-law slope of the Mdust-SFR relation is inversely proportional to the global Schmidt-Kennicutt law exponent (i.e., $sim 0.9$) in simple chemical evolution models. (3) A quenching phase which causes star formation to drop while the dust mass stays roughly constant or drops proportionally. Combined with merging, these processes, as well as the range in total baryonic mass, give rise to a complex population of the diagram which adds significant scatter to the original Mdust-SFR relation. (4) At very high redshifts, a population of galaxies located significantly below the local relation is predicted.
We present a 1.4 GHz Karl G. Jansky Very Large Array (VLA) study of a sample of early-type galaxies (ETGs) from the volume- and magnitude-limited ATLAS-3D survey. The radio morphologies of these ETGs at a resolution of 5 are diverse and include sourc es that are compact on sub-kpc scales, resolved structures similar to those seen in star-forming spiral galaxies, and kpc-scale radio jets/lobes associated with active nuclei. We compare the 1.4 GHz, molecular gas, and infrared (IR) properties of these ETGs. The most CO-rich ATLAS-3D ETGs have radio luminosities consistent with extrapolations from H_2-mass-derived star formation rates from studies of late-type galaxies. These ETGs also follow the radio-IR correlation. However, ETGs with lower molecular gas masses tend to have less radio emission relative to their CO and IR emission compared to spirals. The fraction of galaxies in our sample with high IR-radio ratios is much higher than in previous studies, and cannot be explained by a systematic underestimation of the radio luminosity due to the presence extended, low-surface-brightness emission that was resolved-out in our VLA observations. In addition, we find that the high IR-radio ratios tend to occur at low IR luminosities, but are not associated with low dynamical mass or metallicity. Thus, we have identified a population of ETGs that have a genuine shortfall of radio emission relative to both their IR and molecular gas emission. A number of mechanisms may conspire to cause this radio deficiency, including a bottom-heavy stellar initial mass function, weak magnetic fields, a higher prevalence of environmental effects compared to spirals and enhanced cosmic ray losses.
Radio continuum (RC) emission in galaxies allows us to measure star formation rates (SFRs) unaffected by extinction due to dust, of which the low-frequency part is uncontaminated from thermal (free-free) emission. We calibrate the conversion from the spatially resolved 140 MHz RC emission to the SFR surface density ($Sigma_{rm SFR}$) at 1 kpc scale. We used recent observations of three galaxies (NGC 3184, 4736, and 5055) from the LOFAR Two-metre Sky Survey (LoTSS), and archival LOw-Frequency ARray (LOFAR) data of NGC 5194. Maps were created with the facet calibration technique and converted to radio $Sigma_{rm SFR}$ maps using the Condon relation. We compared these maps with hybrid $Sigma_{rm SFR}$ maps from a combination of GALEX far-ultraviolet and Spitzer 24 $murm m$ data using plots tracing the relation at $1.2times 1.2$-kpc$^2$ resolution. The RC emission is smoothed with respect to the hybrid $Sigma_{rm SFR}$ owing to the transport of cosmic-ray electrons (CREs). This results in a sublinear relation $(Sigma_{rm SFR})_{rm RC} propto [(Sigma_{rm SFR})_{rm hyb}]^{a}$, where $a=0.59pm 0.13$ (140 MHz) and $a=0.75pm 0.10$ (1365 MHz). Both relations have a scatter of $sigma = 0.3~rm dex$. If we restrict ourselves to areas of young CREs ($alpha > -0.65$; $I_ u propto u^alpha$), the relation becomes almost linear at both frequencies with $aapprox 0.9$ and a reduced scatter of $sigma = 0.2~rm dex$. We then simulate the effect of CRE transport by convolving the hybrid $Sigma_{rm SFR}$ maps with a Gaussian kernel until the RC-SFR relation is linearised; CRE transport lengths are $l=1$-5 kpc. Solving the CRE diffusion equation, we find diffusion coefficients of $D=(0.13$-$1.5) times 10^{28} rm cm^2,s^{-1}$ at 1 GeV. A RC-SFR relation at $1.4$ GHz can be exploited to measure SFRs at redshift $z approx 10$ using $140$ MHz observations.
Radio emission is a key indicator of star-formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies the effects of therm al radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of SDSS galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star-formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity--star-formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity ($L_{150}$) and SFR. Interestingly, we find that a single power-law relationship between $L_{150}$ and SFR is not a good description of all SFGs: a broken power law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects which were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.
We use the James Clerk Maxwell Telescopes SCUBA-2 camera to image a 400 arcmin^2 area surrounding the GOODS-N field. The 850 micron rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we co nstruct an 850 micron source catalog to 2 mJy containing 49 sources detected above the 4-sigma level. We use an ultradeep (11.5 uJy at 5-sigma) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9 arcmin radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio flux dependent K-z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 solar masses per year to z~6. We find galaxies with SFRs up to ~6,000 solar masses per year over the redshift range z=1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 solar masses per year.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا