ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical and X-ray Rest-frame Light Curves of the BAT6 sample

127   0   0.0 ( 0 )
 نشر من قبل Andrea Melandri
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the rest-frame light curves in the optical and X-ray bands of an unbiased and complete sample of Swift long Gamma-Ray Bursts (GRBs), namely the BAT6 sample. The unbiased BAT6 sample (consisting of 58 events) has the highest level of completeness in redshift ($sim$ 95%), allowing us to compute the rest-frame X-ray and optical light curves for 55 and 47 objects, respectively. We compute the X-ray and optical luminosities accounting for any possible source of absorption (Galactic and intrinsic) that could affect the observed fluxes in these two bands. We compare the behaviour observed in the X-ray and in the optical bands to assess the relative contribution of the emission during the prompt and afterglow phases. We unarguably demonstrate that the GRBs rest-frame optical luminosity distribution is not bimodal, being rather clustered around the mean value Log(L$_{R}$) = 29.9 $pm$ 0.8 when estimated at a rest frame time of 12 hr. This is in contrast with what found in previous works and confirms that the GRB population has an intrinsic unimodal luminosity distribution. For more than 70% of the events the rest-frame light curves in the X-ray and optical bands have a different evolution, indicating distinct emitting regions and/or mechanisms. The X-ray light curves normalised to the GRB isotropic energy (E$_{rm iso}$), provide evidence for X-ray emission still powered by the prompt emission until late times ($sim$ hours after the burst event). On the other hand, the same test performed for the E$_{rm iso}$-normalised optical light curves shows that the optical emission is a better proxy of the afterglow emission from early to late times.



قيم البحث

اقرأ أيضاً

283 - V. Mangano 2007
We have computed the luminosity rest frame light curves of the first 40 Gamma-ray bursts (GRBs) detected by Swift with well established redshift. We studied average properties of the light curves in the four subsamples of bursts given by z<1, 1<z<2, 2<z<=4, and z>=4. We conclude that all the last three subsamples share the same morphology and the same luminosity range. Very high redshift (z>=4) GRBs detected up to now are not intrinsically longer than lower redshift long GRBs. Nearby long GRBs (z<1) are fainter than average. Possible selection effect are under investigation.
The peaks of 30 optical afterglows and 14 X-ray light-curves display a good anticorrelation of the peak flux with the peak epoch: F_p ~ t_p^{-2.0} in the optical, F_p ~ t_p^{-1.6} in the X-ray, the distributions of the peak epochs being consistent wi th each other. We investigate the ability of two forward-shock models for afterglow light-curve peaks -- an observer location outside the initial jet aperture and the onset of the forward-shock deceleration -- to account for those peak correlations. For both models, the slope of the F_p - t_p relation depends only on the slope of the afterglow spectrum. We find that only a conical jet seen off-aperture and interacting with a wind-like medium can account for both the X-ray peak relation, given the average X-ray spectral slope beta_x = 1.0, and for the larger slope of the optical peak relation. However, any conclusion about the origin of the peak flux - peak epoch correlation is, at best, tentative, because the current sample of X-ray peaks is too small to allow a reliable measurement of the F_p - t_p relation slope and because more than one mechanism and/or one afterglow parameter may be driving that correlation.
137 - Lang Shao , Yi-Zhong Fan , 2010
With its rapid response, {it Swift} has revealed plenty of unexpected properties of gamma-ray bursts (GRBs). With an abundance of observations, our current understanding is only limited by complexity of early X-ray light curves. In this work, based o n the public {it Swift} data of 150 well-monitored GRBs with measured redshifts, we find some interesting global features in the rest-frame X-ray light curves. The distinct spectral behaviors between the prompt emission and the afterglow emission implies dissimilar radiation scenarios. Interestingly, an unforeseen plateau is exhibited in the prompt X-ray light curves despite the presence of complex spikes, which might indicate the presence of a steady central engine. In particular, the seemingly continuous evolution with a single power law from the prompt to the afterglow of most GRBs might place strong constraints on the theoretical models.
We present a comprehensive statistical analysis of Swift X-ray light-curves of Gamma-Ray Bursts (GRBs) collecting data from more than 650 GRBs discovered by Swift and other facilities. The unprecedented sample size allows us to constrain the REST FRA ME X-ray properties of GRBs from a statistical perspective, with particular reference to intrinsic time scales and the energetics of the different light-curve phases in a common rest-frame 0.3-30 keV energy band. Temporal variability episodes are also studied and their properties constrained. Two fundamental questions drive this effort: i) Does the X-ray emission retain any kind of memoryof the prompt gamma-ray phase? ii) Where is the dividing line between long and short GRB X-ray properties? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs in the X-rays, but are interestingly characterized by similar intrinsic absorption. We furthermore reveal the existence of a number of statistically significant relations that link the X-ray to prompt gamma-ray parameters in long GRBs; short GRBs are outliers of the majority of these 2-parameter relations. However and more importantly, we report on the existence of a universal 3-parameter scaling that links the X-ray and the gamma-ray energy to the prompt spectral peak energy of BOTH long and short GRBs: E_{X,iso}propto E_{gamma,iso}^{1.00pm 0.06}/E_{pk}^{0.60pm 0.10}.
We present the rest-frame optical spectral properties of 155 luminous quasars at 3.3<z<6.4 taken with the AKARI space telescope, including the first detection of H$alpha$ emission line as far out as z~6. We extend the scaling relation between the res t-frame optical continuum and line luminosity of active galactic nuclei (AGNs) to the high luminosity, high redshift regime that has rarely been probed before. Remarkably, we find that a single log-linear relation can be applied to the 5100${rm AA}$ and H$alpha$ AGN luminosities over a wide range of luminosity (10$^{42}$<$L_{5100}$<10$^{47}$ergs/s) or redshift (0<z<6), suggesting that the physical mechanism governing this relation is unchanged from z=0 to 6, over five decades in luminosity. Similar scaling relations are found between the optical and the UV continuum luminosities or line widths. Applying the scaling relations to the H$beta$ black hole mass ($M_{rm BH}$) estimator of local AGNs, we derive the $M_{rm BH}$ estimators based on H$alpha$, MgII, and CIV lines, finding that the UV-line based masses are overall consistent with the Balmer-line based, but with a large intrinsic scatter of 0.40dex for the CIV estimates. Our 43 $M_{rm BH}$ estimates from H$alpha$ confirm the existence of BHs as massive as ~10$^{10}M_{odot}$ out to z~5, and provide a secure footing for previous MgII-line based studies that a rapid $M_{rm BH}$ growth has occurred in the early universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا